DOI QR코드

DOI QR Code

NO2 and SO2 Reduction Capacities and Their Relation to Leaf Physiological and Morphological Traits in Ten Landscaping Tree Species

조경수 10개 수종에 있어 NO2, SO2 저감 능력과 잎의 생리적, 형태적 특성과의 관계

  • Kim, Kunhyo (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Jeon, Jihyeon (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Yun, Chan Ju (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Kim, Tae Kyung (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Hong, Jeonghyun (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Jeon, Gi-Seong (Korea Expressway Corporation Research Institute) ;
  • Kim, Hyun Seok (Department of Agriculture, Forestry and Bioresources, Seoul National University)
  • 김근효 (서울대학교 농림생물자원학부 산림환경학전공) ;
  • 전지현 (서울대학교 농림생물자원학부 산림환경학전공) ;
  • 윤찬주 (서울대학교 농림생물자원학부 산림환경학전공) ;
  • 김태경 (서울대학교 농림생물자원학부 산림환경학전공) ;
  • 홍정현 (서울대학교 농림생물자원학부 산림환경학전공) ;
  • 전기성 (한국도로공사 도로교통연구원) ;
  • 김현석 (서울대학교 농림생물자원학부 산림환경학전공)
  • Received : 2021.05.06
  • Accepted : 2021.06.21
  • Published : 2021.09.30

Abstract

With increasing anthropogenic emission sources, air pollutants are emerging as a severe environmental problem worldwide. Accordingly, the importance of landscape trees is emerging as a potential solution to reduce air pollutants, especially in urban areas. This study quantified and compared NO2 and SO2 reduction abilities of ten major landscape tree species and analyzed the relationship between reduction ability and physiological and morphological characteristics. The results showed NO2 reduction per leaf area was greatest in Cornus officinalis (19.81 ± 3.84 ng cm-2 hr-1) and lowest in Pinus strobus (1.51 ± 0.81 ng cm-2 hr-1). In addition, NO2 reduction by broadleaf species (14.72 ± 1.32 ng cm-2 hr-1) was 3.1-times greater than needleleaf species (4.68 ± 1.26 ng cm-2hr-1; P < 0.001). Further, SO2 reduction per leaf area was greatest in Zelkova serrata (70.04 ± 7.74 ng cm-2 hr-1) and lowest in Pinus strobus (4.79 ± 1.02 ng cm-2 hr-1). Similarly, SO2 reduction by broadleaf species (44.21 ± 5.01 ng cm-2 hr-1) was 3.9-times greater than needleleaf species (11.47 ± 3.03 ng cm-2 hr-1; P < 0.001). Correlation analysis revealed differences in NO2 reduction was best explained by chlorophyll b content (R2 = 0.671, P = 0.003) and SO2 reduction was best described by SLA and length of margin per leaf area (R2 = 0.456, P = 0.032 and R2 = 0.437, P = 0.001, R2 = 0.872, P < 0.001, respectively). In summary, the ability of trees to reduce air pollutants was related to photosynthesis, evapotranspiration, stomatal conductance, and leaf thickness. These findings highlight effective reduction of air pollutants by landscaping trees requires comprehensively analyzing physiological and morphological species characteristics.

운송 산업과 공장 산업으로 인한 대기 중 오염물질의 증가는 전 세계적으로 중요한 환경 문제 중 하나로 떠오르고 있다. 우리나라의 도시 지역은 산업 단지가 밀집되어 있고 인간의 활동이 집중되어 있어 사람들의 건강을 위협하는 대기오염의 피해가 더욱 심각하다. 대기오염물질을 저감하는 친환경 방안으로 조경수의 활용이 각광받고 있으나, 대기 오염 정화 능력이 뛰어난 수종 선정과 조경수의 관리에 대한 연구는 아직 부족한 실정이다. 본 연구에서는 주요 조경수 10수종을 대상으로 NO2와 SO2 저감 능력을 정량화하여 비교하였으며, 수종별 생리적, 형태적 특성과 NO2, SO2 저감 능력의 관계를 분석하였다. 실험은 밀폐 챔버를 통해 진행되었으며, 생리적 특성은 엽록소와 카로티노이드 함량을 측정하였고, 형태적 특성은 잎의 넓이, 잎의 둘레, 엽면적비를 측정하였다. 엽면적당 NO2 저감량은 산수유(19.81 ± 3.84 ng cm-2 hr-1)가 가장 높았고 스트로브잣나무(1.51 ± 0.81 ng cm-2 hr-1)가 가장 낮았으며, 활엽수종(14.72 ± 1.32 ng cm-2 hr-1)이 침엽수종(4.68 ± 1.26 ng cm-2 hr-1)보다 약 3.1배 높았다(P < 0.001). 엽면적당 SO2 저감량은 느티나무(70.04 ± 7.74 ng cm-2 hr-1)가 가장 높고 스트로브잣나무(4.79 ± 1.02 ng cm-2 hr-1)가 가장 낮았으며, 활엽수종(44.21 ± 5.01 ng cm-2 hr-1)이 침엽수종(11.47 ± 3.03 ng cm-2 hr-1)보다 약 3.9배 높았다(P < 0.001). 상관관계 분석 결과 NO2 저감능력은 엽록소 b 함량에 의해 가장 잘 설명되었으며(R2 = 0.671, P = 0.003), SO2 저감능력은 SLA와 엽면적당 둘레비에 의해 가장 잘 설명되었다(각각 R2 = 0.456, P = 0.032와 R2 = 0.437, P = 0.001, R2 = 0.872, P < 0.001). 결과적으로, 수목의 대기오염물질 저감 능력은 광합성, 증발산, 기공전도도, 잎의 두께와 관련이 있는 것으로 판단된다. 따라서, 앞으로 조경수 식재를 위해 수종을 선발하는 경우에는 수종의 생리적, 형태적 특성을 종합적으로 고려하고, 기존에 식재된 수목은 건강한 생리적 활성을 유지하도록 지속적인 관리가 필요하다.

Keywords

Acknowledgement

본 연구는 한국도로공사 공공용역사업 '고속도로 환경을 고려한 조경수목 식재실험 모니터링 연구'와 산림청(한국임업진흥원) 산림과학기술 연구개발사업(2020185D10-2122-AA02)의 지원으로 수행되었으며, 본 연구를 수행하는데 물심양면으로 도와주신 서울대학교 칠보산 학술림과 그 관계자 분들께 무한한 감사를 표하는 바입니다.

References

  1. Amundson, R. and Weinstein, L. 1981. Joint action of sulfur dioxide and nitrogen dioxide on foliar injury and stomatal behavior in soybean. Journal of Environmental Quality 10: 204-206. https://doi.org/10.2134/jeq1981.00472425001000020016x
  2. Ashenden, T. 1979. Effects of SO2 and NO2 pollution on transportation in Phaseolus vulgaris L. Environmental Pollution 18(1): 45-50. https://doi.org/10.1016/0013-9327(79)90032-6
  3. Bennett, J.H. and Hill, A.C. 1973. Absorption of gaseous air pollutants by a standardized plant canopy. Journal of the Air Pollution Control Association 23(3): 203-206. https://doi.org/10.1080/00022470.1973.10469767
  4. Bennett, J.H., Lee, E.H. and Heggestad, H.E. 1990. Inhibition of photosynthesis and leaf conductance interactions induced by SO2, NO2 and SO2 + NO2. Atmospheric Environment. Part A. General Topics 24(3): 557-562. https://doi.org/10.1016/0960-1686(90)90010-K
  5. Biggs, A. and Davis, D. 1980. Varying Acute Doses of SO. Journal of the American Society for Horticultural Science 105(4): 514-516. https://doi.org/10.21273/JASHS.105.4.514
  6. Chakre, O.J. 2006. Choice of eco-friendly trees in urban environment to mitigate airborne particulate pollution. Journal of Human Ecology 20(2): 135-138. https://doi.org/10.1080/09709274.2006.11905917
  7. Chaparro-Suarez, I., Meixner, F. and Kesselmeier, J. 2011. Nitrogen dioxide (NO2) uptake by vegetation controlled by atmospheric concentrations and plant stomatal aperture. Atmospheric Environment 45(32): 5742-5750. https://doi.org/10.1016/j.atmosenv.2011.07.021
  8. Cho, H.J. and Choi, D.Y. 2009. Effects of road and traffic characteristics on roadside air pollution. Journal of Korean Society of Transportation 27(6): 139-146.
  9. Cho, S.B., Lee, H.S., Lee, J.K., Park, S.H., Kim, H.D., Kwak, M.J., Lee, K.A., Lim, Y.J. and Woo, S.Y. 2020. Air pollution tolerance index (APTI) of main street trees following ozone exposure. Journal of Korean Society of Forest Science 109(1): 50-61.
  10. Clarke, V.C., Danila, F.R. and von Caemmerer, S. 2021. CO2 diffusion in tobacco: a link between mesophyll conductance and leaf anatomy. Interface Focus 11(2): 20200040. https://doi.org/10.1098/rsfs.2020.0040
  11. Croft, H., Chen, J.M., Luo, X., Bartlett, P., Chen, B. and Staebler, R.M. 2017. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Global Change Biology 23(9): 3513-3524. https://doi.org/10.1111/gcb.13599
  12. Dhir, B. 2016. Air pollutants and photosynthetic efficiency of plants. In Plant responses to air pollution. Springer. Singapore. pp. 71-84.
  13. Downton, W., Loveys, B. and Grant, W. 1988. Non-uniform stomatal closure induced by water stress causes putative non-stomatal inhibition of photosynthesis. New Phytologist 110(4): 503-509. https://doi.org/10.1111/j.1469-8137.1988.tb00289.x
  14. Ellsworth, D.S., Thomas, R., Crous, K.Y., Palmroth, S., Ward, E., Maier, C., DeLucia, E. and Oren, R. 2012. Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: a synthesis from Duke FACE. Global Change Biology 18(1): 223-242. https://doi.org/10.1111/j.1365-2486.2011.02505.x
  15. Gessler, A., Rienks, M. and Rennenberg, H. 2000. NH3 and NO2 fluxes between beech trees and the atmosphere-correlation with climatic and physiological parameters. New Phytologist 147(3): 539-560. https://doi.org/10.1046/j.1469-8137.2000.00712.x
  16. Hiscox, J. and Israelstam, G. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57(12): 1332-1334. https://doi.org/10.1139/b79-163
  17. Hu, Y., Sun, G. and Huang, Y. 2011. Foliar uptake of atmospheric nitrogen dioxide. 2011 5th International Conference on Bioinformatics and Biomedical Engineering.
  18. Jo, H.K. and Ahn, T.W. 2001. Role of atmospheric purification by trees in urban ecosystem: in the case of Yongin. Journal of Korean Institute of Landscape Architecture 29(3): 38-45.
  19. Jo, H.K., Cho, Y.H. and Ahn, T.W. 2002. Capacity of value of atmospheric purification for Namsan Nature Park in Seoul. Journal of Korean Institute of Landscape Architecture 16(2): 172-178.
  20. Joshi, P.C. and Swami, A. 2009. Air pollution induced changes in the photosynthetic pigments of selected plant species. Journal of Environmental Biology 30(2): 295-298.
  21. Kim, J.G. and Koh, K.S. 1996. Parameters for evaluating the sink capacity of broad leaves trees for the gas phase air pollutants. Korean Journal of Environmental Agriculture 15(4): 472-478.
  22. Kimmerer, T.W. and Kozlowski, T. 1981. Stomatal conductance and sulfur uptake of five clones of Populus tremuloides exposed to sulfur dioxide. Plant Physiology 67(5): 990-995. https://doi.org/10.1104/pp.67.5.990
  23. Larssen, T., Lydersen, E., Tang, D., He, Y., Gao, J., Liu, H., Duan, L., Seip, H.M., Vogt, R.D. and Mulder, J. 2006. Acid rain in China. ACS Publications.
  24. Lee, S.E. 2019. The effect of the perception of air pollution on life satisfaction and the moderating of said effect with green spaces. Journal of Korean Society of Forest Science 108(4): 639-644.
  25. Liu, X.-H., Zhang, Y., Xing, J., Zhang, Q., Wang, K., Streets, D.G., Jang, C., Wang, W.-X. and Hao, J.-M. 2010. Understanding of regional air pollution over China using CMAQ, part II. Process analysis and sensitivity of ozone and particulate matter to precursor emissions. Atmospheric Environment 44(30): 3719-3727. https://doi.org/10.1016/j.atmosenv.2010.03.036
  26. Manninen, S. and Huttunen, S. 2000. Response of needle sulphur and nitrogen concentrations of Scots pine versus Norway spruce to SO2 and NO2. Environmental Pollution 107(3): 421-436. https://doi.org/10.1016/S0269-7491(99)00158-X
  27. Manning, W.J. 2008. Plants in urban ecosystems: Essential role of urban forests in urban metabolism and succession toward sustainability. The International Journal of Sustainable Development & World Ecology 15(4): 362-370. https://doi.org/10.3843/susdev.15.4:12
  28. Mansfield, T. and Freer-Smith, P. 1984. The role of stomata in resistance mechanisms. Gaseous air pollutants and plant metabolism. Butterworth-Heinemann. United Kingdom. pp. 131-146.
  29. Martin, T.A., Hinckley, T.M., Meinzer, F.C. and Sprugel, D.G. 1999. Boundary layer conductance, leaf temperature and transpiration of Abies amabilis branches. Tree Physiology 19(7): 435-443. https://doi.org/10.1093/treephys/19.7.435
  30. Meng, Z., Ding, G., Xu, X., Xu, X., Yu, H. and Wang, S. 2008. Vertical distributions of SO2 and NO2 in the lower atmosphere in Beijing urban areas, China. Science of the Total Environment 390(2-3): 456-465. https://doi.org/10.1016/j.scitotenv.2007.10.012
  31. Mukherjee, A. and Agrawal, M. 2016. Pollution response score of tree species in relation to ambient air quality in an urban area. Bulletin of Environmental Contamination and Toxicology 96(2): 197-202. https://doi.org/10.1007/s00128-015-1679-1
  32. Muzika, R., Guyette, R., Zielonka, T. and Liebhold, A. 2004. The influence of O3, NO2 and SO2 on growth of Picea abies and Fagus sylvatica in the Carpathian Mountains. Environmental Pollution 130(1): 65-71. https://doi.org/10.1016/j.envpol.2003.10.021
  33. Nowak, D.J., Crane, D.E., Stevens, J.C., Hoehn, R.E., Walton, J.T. and Bond, J. 2008. A ground-based method of assessing urban forest structure and ecosystem services. Aboriculture & Urban Forestry 34(6): 347-358. https://doi.org/10.48044/jauf.2008.048
  34. Okano, K., Machida, T. and Totsuka, T. 1989. Differences in ability of NO2 absorption in various broad-leaved tree species. Environmental Pollution 58(1): 1-17. https://doi.org/10.1016/0269-7491(89)90233-9
  35. Pandey, J.S., Kumar, R. and Devotta, S. 2005. Health risks of NO2, SPM and SO2 in Delhi (India). Atmospheric Environment 39(36): 6868-6874. https://doi.org/10.1016/j.atmosenv.2005.08.004
  36. Ryu, J., Kim, J.J., Byeon, H., Go, T. and Lee, S.J. 2019. Removal of fine particulate matter (PM2.5) via atmospheric humidity caused by evapotranspiration. Environmental Pollution 245: 253-259. https://doi.org/10.1016/j.envpol.2018.11.004
  37. Santos, V.A.H.F.d., Ferreira, M.J., Rodrigues, J.V.F.C., Garcia, M.N., Ceron, J.V.B., Nelson, B.W. and Saleska, S.R. 2018. Causes of reduced leaf-level photosynthesis during strong El Nino drought in a Central Amazon forest. Global Change Biology 24(9): 4266-4279. https://doi.org/10.1111/gcb.14293
  38. Sgrigna, G., Baldacchini, C., Dreveck, S., Cheng, Z. and Calfapietra, C. 2020. Relationships between air particulate matter capture efficiency and leaf traits in twelve tree species from an Italian urban-industrial environment. Science of the Total Environment 718: 137310. https://doi.org/10.1016/j.scitotenv.2020.137310
  39. Shah, S.H., Houborg, R. and McCabe, M.F. 2017. Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy 7(3): 61. https://doi.org/10.3390/agronomy7030061
  40. Singh, S.N. and Tripathi, R.D. 2007. Environmental bioremediation technologies. Springer Science & Business Media.
  41. Sudalma, S., Purwanto, P. and Santoso, L.W. 2015. The effect of SO2 and NO2from transportation and stationary emissions sources to SO42- and NO3- in rain water in Semarang. Procedia Environmental Sciences 23: 247-252. https://doi.org/10.1016/j.proenv.2015.01.037
  42. Takahashi, M., Higaki, A., Nohno, M., Kamada, M., Okamura, Y., Matsui, K., Kitani, S. and Morikawa, H. 2005. Differential assimilation of nitrogen dioxide by 70 taxa of roadside trees at an urban pollution level. Chemosphere 61(5): 633-639. https://doi.org/10.1016/j.chemosphere.2005.03.033
  43. Terashima, I. and Ono, K. 2002. Effects of HgCl2 on CO2 dependence of leaf photosynthesis: evidence indicating involvement of aquaporins in CO2 diffusion across the plasma membrane. Plant and Cell Physiology 43(1): 70-78. https://doi.org/10.1093/pcp/pcf001
  44. Veromann-Jurgenson, L.-L., Tosens, T., Laanisto, L. and Niinemets, U. 2017. Extremely thick cell walls and low mesophyll conductance: welcome to the world of ancient living! Journal of Experimental Botany 68(7): 1639-1653. https://doi.org/10.1093/jxb/erx045
  45. Villar, R., Ruiz-Robleto, J., Ubera, J.L. and Poorter, H. 2013. Exploring variation in leaf mass per area (LMA) from leaf to cell: an anatomical analysis of 26 woody species. American Journal of Botany 100(10): 1969-1980. https://doi.org/10.3732/ajb.1200562
  46. Wang, S., Li, Y., Ju, W., Chen, B., Chen, J., Croft, H., Mickler, R.A. and Yang, F. 2020. Estimation of leaf photosynthetic capacity from leaf chlorophyll content and leaf age in a subtropical evergreen coniferous plantation. Journal of Geophysical Research: Biogeosciences 125(2): e2019JG005020.
  47. Wei, X., Lyu, S., Yu, Y., Wang, Z., Liu, H., Pan, D. and Chen, J. 2017. Phylloremediation of air pollutants: exploiting the potential of plant leaves and leaf-associated microbes. Frontiers in Plant Science 8: 1318. https://doi.org/10.3389/fpls.2017.01318
  48. Wellburn, A.R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144(3): 307-313. https://doi.org/10.1016/s0176-1617(11)81192-2
  49. WHO (World Health Organization). 2006. Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization.
  50. Woo, S.Y. 2021. Tree Environmental Physiology. World Science.
  51. Woo, S.Y., Lee, S.H. and Lee, D.S. 2004. Air pollution effects on the photosynthesis and chlorophyll contents of street trees in Seoul. Korean Journal of Agricultural and Forest Meteorology 6(1): 24-29.
  52. Xie, Y., Zhao, B., Zhang, L. and Luo, R. 2015. Spatiotemporal variations of PM2.5 and PM10concentrations between 31 Chinese cities and their relationships with SO2, NO2, CO and O3. Particuology 20: 141-149. https://doi.org/10.1016/j.partic.2015.01.003
  53. Xie, Z., Du, Y., Zeng, Y., Li, Y., Yan, M. and Jiao, S. 2009. Effects of precipitation variation on severe acid rain in southern China. Journal of Geographical Sciences 19(4): 489-501. https://doi.org/10.1007/s11442-009-0489-y
  54. Yan, J., Tsuichihara, N., Etoh, T. and Iwai, S. 2007. Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening. Plant, Cell & Environment 30(10): 1320-1325. https://doi.org/10.1111/j.1365-3040.2007.01711.x
  55. Yang, J., Liu, H. and Sun, J. 2018. Evaluation and application of an online coupled modeling system to assess the interaction between urban vegetation and air quality. Aerosol and Air Quality Research 18(3): 693-710. https://doi.org/10.4209/aaqr.2017.06.0199
  56. Zhang, X., Zhang, L., Dong, F., Gao, J., Galbraith, D.W. and Song, C.-P. 2001. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiology 126(4): 1438-1448. https://doi.org/10.1104/pp.126.4.1438