DOI QR코드

DOI QR Code

Economic Feasibility of Forest Biomass Thermal Energy Facility Using Real Option Approach

실물옵션법을 이용한 산림 바이오매스 열공급 시설의 투자 분석

  • An, Hyunjin (Department of Forest Policy Research, Korea Rural Economic Institute) ;
  • Min, Kyungtaek (Department of Forest Policy Research, Korea Rural Economic Institute)
  • 안현진 (한국농촌경제연구원 산림정책연구부) ;
  • 민경택 (한국농촌경제연구원 산림정책연구부)
  • Received : 2021.05.02
  • Accepted : 2021.09.06
  • Published : 2021.09.30

Abstract

The energy use of forest biomass is crucial to deal with climate change and achieve the carbon-neutral goal. This study aims to analyze the economic feasibility of forest biomass thermal energy facilities and calculate the optimal subsidy level of heat supply to ensure continued operation of the facilities. To achieve this aim, the net present value approach (NPV) and call option price model are adopted considering wood chip price volatilities. The Forest Energy Self-Sufficient Village Project financed by Korea Forest Service is considered as the research case study. In our analysis, when 50% of the initial investment is given to the subsidies and RECs are applied to only power generation, NPV and IRR are both negative and the investment value using the real option model is also zero. We concluded that some heat subsidies should be acknowledged to keep the facilities operating. Besides, the simulation results reveal reliable economic values when the heating subsidy is priced at KRW 0.0248 per kcal.

기후변화 대응과 탄소중립 실현을 위해 산림 바이오매스의 에너지 이용은 중요한 과제이다. 이 연구의 목적은 목재칩 보일러를 주력으로 사용하는 산림에너지자립마을의 투자 타당성을 분석하고 시설의 지속적 운영을 위해 필요한 적정열 보조금 수준을 산출하는 데 있다. 분석을 위해 순현재가치법과 선택의 유연성을 고려한 콜옵션 가격결정모형을 이용하였다. 분석결과에 따르면, 현재와 같이 국비 50%를 지원하고 전력에만 REC를 인정하면 산림에너지자립마을의 순현재가치와 내부수익률은 모두 음(-)이며, 실물옵션 모형으로 평가한 투자가치도 0으로 나타났다. 따라서 에너지 시설의 지속적 가동을 위해 정부 보조금이 필요하다. 시뮬레이션을 통해 사업의 옵션가치를 0보다 크게 만드는 열보조금 수준을 도출하였는데, 최소 0.0248원/kcal으로 나타났다.

Keywords

Acknowledgement

이 논문은 한국농촌경제연구원 2020년도 기본연구과제(R911) 「산림 바이오매스의 지역 에너지 이용 확대 방안」의 일부를 정리한 것입니다.

References

  1. Austrian Energy Agency. 2007. Low carbon heating with wood pellet fuel. A report by XCO2 Conisbee Ltd.
  2. Chaiyapo, N. and Phewchean, N. 2017. An application of Ornstein-Uhlenbeck process to commodity pricing in Thailand. Advances in Difference Equations 1: 179. https://doi.org/10.1186/s13662-017-1234-y
  3. Cho, M.J. 2018. Forest biomass supply chain management for regional self-sufficient thermal energy utilization. Ph. D. Dissertation. Kangwon National University.
  4. Dixit, A.K. and Pindyck, R.S. 1994. Investment under Uncertainty. Princeton University Press. Princeton, N.J.
  5. Eco Network. 2018. Monitoring of domestic wood market with change of REC weight in domestic wood. Korea Forest Service.
  6. EPSIS (Electric Power Statistics Information System) http://epsis.kpx.or.kr/epsisnew/selectEkmaRegUpsGrid.do?menuId=050804, 2020.9.15.
  7. Guthrie, G. Real Options in Theory and Practice: Financial Management Association Survey and Synthesis; Oxford University Press: Oxford, New York, 2009; ISBN 978-0-19-538063-7.
  8. Kang, C.Y. 2020. A Study on the development of holed woodcoal briquette(HWCB) using unused forest biomass. Ph.D. Dissertation. Chungnam National University.
  9. KFS (Korea Forest Service). 2020. The study on fostering the use of unused forest biomass. KFS.
  10. KOPFI (Korea Forestry Promotion Institute). 2020. International discussion on the role of forest biomass energy as a clean climate technology: Summary for decisionmakers. pp. 49.
  11. Ministry of Commerce Industry and Energy. 2007. Policy Tasks for Utilization of Woody Biomass as Energy Source. Ministry of Commerce Industry and Energy.
  12. Min, K.T., An, H.J. and Byun S.Y. 2020. Policy tasks to use forest biomass as a local energy source. R911. Korea Rural Economic Institute.
  13. Oh, K.H. and Cho, Y.C. 2013. Economical feasibility of the treatment methods of the dredged sediments from contaminated agricultural reservoirs. Journal of Korean Society of Environmental Engineers 35(10): 756-762. https://doi.org/10.4491/KSEE.2013.35.10.756
  14. Park, H.J. 2018. Real option and investment analysis. Real Portal.
  15. Park, Y.S. 2019. The present situation and implications of EU renewable energy policy supporting heat supply. NARS Issue paper No. 96. National Assembly Research Service.
  16. Plantinga, A.J. 1998. The optimal timber rotation: an option value approach. Forest Science 44(2): 192-202.
  17. Public Data Portal. https://www.data.go.kr/data/3070430/fileData.do, 2020.9.15.
  18. Routledge, B.R., Seppi, D.J. and Spatt, C.S. 2000. Equilibrium forward curves for commodities. The Journal of Finance 55(3): 1297-1338. https://doi.org/10.1111/0022-1082.00248
  19. RRI (Rural Research Institute), KIER(Korea Institute of Energey Research). 2018. A study on the energy conversion system of rural area focusing on renewable energy. Korea Rural Community Corporation.
  20. Seok, H.D., Min, K.T., Sohn C.H. and Jang, W.W. 2005. Economic feasibility of woody biomass heat energy use and sustainable collection method of forest residues. C2005-30 Korea Rural Economic Institute.
  21. Seok, H.D. and Kim, S.J. 2008. A study of industrializations and usages of forest biomass. C2008-58. Korea Rural Economic Institute.
  22. Song, N. and Aguilar, F.X. 2017. Woody biomass energy efficiency pathways: public policy implications. Biofuels 8(4): 473-483. https://doi.org/10.1080/17597269.2016.1259520
  23. Suh, G.Y. and Kim, S.H. 2012. Case study and evaluation of economic feasibility of combined heat and power system using woodchip biomass. New & Renewable Energy 8(4): 21-29. https://doi.org/10.7849/ksnre.2012.8.4.021
  24. Yanagida, T., Yoshida, T., Kuboyama, H. and Jinkawa, M. 2015. Relationship between feedstock price and break-even point of woody biomass power generation under FIT program. Journal of the Japan Institute of Energy 94(3): 311-320. (in Japanese) https://doi.org/10.3775/jie.94.311
  25. Yoo, S.H., Lee, S.K., Kim, S.H. and Seo, J.W. 2019. Fostering mountain village through the forest biomass energy use. Forest Policy Issue No. 119. National Forest Science Institute.