DOI QR코드

DOI QR Code

판상형 공동주택의 동 배치 및 종횡비에 따른 풍압계수 특성에 관한 연구

A Study on the Wind Pressure Coefficients of Flat-type Apartment Complexes Considering Building Layout and Aspect Ratio

  • 윤성훈 (남서울대학교 건축공학과)
  • Yoon, Seong-Hoon (Department of Architectural Engineering, Namseoul University)
  • 투고 : 2021.07.08
  • 심사 : 2021.09.20
  • 발행 : 2021.09.28

초록

건축물의 환기성능 평가를 위한 모델링 과정에서 핵심 경계조건으로 활용되는 풍압계수는 통상 저층형 단일 건물에 대해서만 자료화되어 있어, 공동주택 단지와 같은 고층형 집합주택의 모델링 시에는 적용할 수 없다. 이에 본 연구에서는 CFD(Computational Fluid Dynamics)해석을 통해 건물의 배치 및 종횡비가 다른 판상형 공동주택에 대하여 풍향각에 따른 풍압계수의 특성을 분석하고 유형화함으로써 환기 모델링 시 참고할 수 있는 기초자료를 제시하였다. 풍향각 0도의 경우 가장 풍상측에 위치한 건물의 정면에서는 좌우가 반전된 S자 형태의 풍압계수 분포가 나타났으며, 최하층, 최상층 및 2개의 변곡점에 해당하는 풍압계수는 건물의 높이와 관계없이 비교적 근사한 값을 보였다. 저층부의 변곡점은 약 11m 높이에 형성되었으며, 고층부 변곡점의 높이는 건물의 높이에 비례하는 추세식을 통해 산출가능함을 확인하였다. 또한 풍향각 45도 조건을 제외하면 대부분의 조건에서 풍압계수의 평균값을 적용 가능함을 확인하였다.

In this study, basic data that can be referenced for ventilation modeling was presented by analyzing the characteristics of wind pressure coefficients(Cp) according to wind direction angles under conditions of different building layouts and aspect ratios through CFD (Computational Fluid Dynamics) analysis for flat-type apartment complexes. In the case of a wind direction angle of 0°, Cp distribution in the form of an inverted S-shape was shown on the front of the building located on the windward side. And Cp corresponding to the lowest floor, the uppermost floor, and the two inflection points showed relatively close values regardless of the height of the building. The inflection point of the low-rise part was formed at a height of about 11m, and the height of the high-rise part could be calculated through a trend formula proportional to the height of the building. It was confirmed that the averaged Cp value can be applied in most conditions except for the wind direction angle of 45 degrees.

키워드

과제정보

Funding for this paper was provided by Namseoul University.

참고문헌

  1. Ministry of Land (2020). Infrastructure and Transport, Regulations for Equipment Standard of Building, Article 11.
  2. Ministry of Land (2020). Infrastructure and Transport, Regulations for Equipment Standard of Building, Attached Table 1-3.
  3. M. Orme, M.W. Liddament & A. Wilson. (1998) Numerical Data for Air Infiltration & Natural Ventilation Calculations, Technical Note AIVC 44, 82-87.
  4. M. Orme & N. Leksmono. (2002) Ventilation Modeling Data Guide, AIVC Guide 5, 63-66.
  5. D. Mu, N. Gao & T. Zhu. (2016). Wind Tunnel tests of Inter-flat Pollutant Transmission Characteristics in A Rectangular Multi-storey Residential Building, Part A : Effect of Wind Direction, Building and Environment, 108, 159-170. https://doi.org/10.1016/j.buildenv.2016.08.032
  6. D. Mu, C. Shu, N. Gao & T. Zhu. (2017). Wind Tunnel tests of Inter-flat Pollutant Transmission Characteristics in A Rectangular Multi-storey Residential Building, Part B : Effect of Source Location, Building and Environment, 114, 281-292. https://doi.org/10.1016/j.buildenv.2016.12.031
  7. W. J. Jo & J. Y. Sohn. (2007). Distribution Characteristic of Seasonal Wind Pressure of an Apartment Complex by Wind Tunnel Test. Journal of the Architectural Institute of Korea (Planning & Design), 23(8), 237-245.
  8. S. H. Kim, S. W. Yoon & S. D. Kim. (1995) A Study of the Wind Pressure Coefficient for Tall Buildings, Proceeding of Architectural Institute of Korea, 15(2), 427-430.
  9. D. S. Shin, J. H. Park, B. M. Kang, E. M. Kim, H. J. Lim & J. Y. Lee. (2016). A Study of Wind Pressure Distribution for A Rectangular Building Using CFD, Korean Journal of Air-Conditioning and Refrigeration Engineering, 28(1), 1-6. https://doi.org/10.6110/KJACR.2016.28.1.001
  10. J. I. Lee & J. O. Yoon. (2014). Simulations of Wind Pressure Coefficient at Windward Wall and Leeward Wall of Apartment Buildings, Proceeding of Architectural Institute of Korea (Spring Conference), 34(1), 239-240.
  11. H. Yoon, S. T. No & K. S. Kim. (2009). A Study about Natural Ventilation Analysis Methods for Apartment Buildings Using CFD, Journal of the Architectural Institute of Korea (Planning & Design), 25(6), 221-228.
  12. J. Burnett, M. Bojic & F. Yik. (2005). Wind-induced Pressure at External Surfaces of A High-rise Residential Building in Hong Kong, Building and Environment, 40, 765-777. https://doi.org/10.1016/j.buildenv.2004.08.019
  13. S. H. Suh, K. Y. Lee, S. S. Yoo & H. W. Roh. (1995). Determination of Wind Pressure Coefficients around Prismatic Structures with Different Aspect Ratios, Journal of Air Conditioning and Refrigeration Engineering, 7(1), 52-62.
  14. J. S. Choi,, E. J. Kim & S. H. Yoon. (2019). A Study on the Comparison of Wind Pressure Coefficient and Natural Ventilation Performance Accorcing to the Layout of Apartment Complex, Journal of Korean Institute of Architectural Sustainable Environment and Building Systems, 13(5), 315-324.
  15. J. S. Choi, E. J. Kim & S. H. Yoon. (2021). A Study on the Wind Pressure Coefficients and Natural Ventilation Performance of Apartment Complexes Considering Wind Direction and Building Layout, Journal of the Korean Solar Energy Society, 41(2), 39-49.