DOI QR코드

DOI QR Code

The trinity of ribosome-associated quality control and stress signaling for proteostasis and neuronal physiology

  • Park, Jumin (Department of Biological Sciences, Ulsan National Institute of Science and Technology) ;
  • Park, Jongmin (Department of Biological Sciences, Ulsan National Institute of Science and Technology) ;
  • Lee, Jongbin (Department of Biological Sciences, Ulsan National Institute of Science and Technology) ;
  • Lim, Chunghun (Department of Biological Sciences, Ulsan National Institute of Science and Technology)
  • Received : 2021.06.21
  • Accepted : 2021.08.24
  • Published : 2021.09.30

Abstract

Translating ribosomes accompany co-translational regulation of nascent polypeptide chains, including subcellular targeting, protein folding, and covalent modifications. Ribosome-associated quality control (RQC) is a co-translational surveillance mechanism triggered by ribosomal collisions, an indication of atypical translation. The ribosome-associated E3 ligase ZNF598 ubiquitinates small subunit proteins at the stalled ribosomes. A series of RQC factors are then recruited to dissociate and triage aberrant translation intermediates. Regulatory ribosomal stalling may occur on endogenous transcripts for quality gene expression, whereas ribosomal collisions are more globally induced by ribotoxic stressors such as translation inhibitors, ribotoxins, and UV radiation. The latter are sensed by ribosome-associated kinases GCN2 and ZAKα, activating integrated stress response (ISR) and ribotoxic stress response (RSR), respectively. Hierarchical crosstalks among RQC, ISR, and RSR pathways are readily detectable since the collided ribosome is their common substrate for activation. Given the strong implications of RQC factors in neuronal physiology and neurological disorders, the interplay between RQC and ribosome-associated stress signaling may sustain proteostasis, adaptively determine cell fate, and contribute to neural pathogenesis. The elucidation of underlying molecular principles in relevant human diseases should thus provide unexplored therapeutic opportunities.

Keywords

Acknowledgement

This work was supported by grants from the Suh Kyungbae Foundation (SUHF-17020101); from the National Research Foundation funded by the Ministry of Science and Information & Communication Technology (MSIT), Republic of Korea (NRF2021R1A2C3011706; NRF-2021M3A9G8022960; NRF-2018 R1A5A1024261).

References

  1. Collart MA and Weiss B (2020) Ribosome pausing, a dangerous necessity for co-translational events. Nucleic Acids Res 48, 1043-1055 https://doi.org/10.1093/nar/gkz763
  2. Stein KC and Frydman J (2019) The stop-and-go traffic regulating protein biogenesis: how translation kinetics controls proteostasis. J Biol Chem 294, 2076-2084 https://doi.org/10.1074/jbc.REV118.002814
  3. D'Orazio KN and Green R (2021) Ribosome states signal RNA quality control. Mol Cell 81, 1372-1383 https://doi.org/10.1016/j.molcel.2021.02.022
  4. Wolin SL and Maquat LE (2019) Cellular RNA surveillance in health and disease. Science 366, 822-827 https://doi.org/10.1126/science.aax2957
  5. Brandman O and Hegde RS (2016) Ribosome-associated protein quality control. Nat Struct Mol Biol 23, 7-15 https://doi.org/10.1038/nsmb.3147
  6. Inada T (2020) Quality controls induced by aberrant translation. Nucleic Acids Res 48, 1084-1096 https://doi.org/10.1093/nar/gkz1201
  7. Joazeiro CAP (2019) Mechanisms and functions of ribosome-associated protein quality control. Nat Rev Mol Cell Biol 20, 368-383 https://doi.org/10.1038/s41580-019-0118-2
  8. Sitron CS and Brandman O (2020) Detection and degradation of stalled nascent chains via ribosome-associated quality control. Annu Rev Biochem 89, 417-442 https://doi.org/10.1146/annurev-biochem-013118-110729
  9. Meydan S and Guydosh NR (2021) A cellular handbook for collided ribosomes: surveillance pathways and collision types. Curr Genet 67, 19-26 https://doi.org/10.1007/s00294-020-01111-w
  10. Vind AC, Genzor AV and Bekker-Jensen S (2020) Ribosomal stress-surveillance: three pathways is a magic number. Nucleic Acids Res 48, 10648-10661 https://doi.org/10.1093/nar/gkaa757
  11. Yip MCJ and Shao S (2021) Detecting and rescuing stalled ribosomes. Trends Biochem Sci 46, 731-743 https://doi.org/10.1016/j.tibs.2021.03.008
  12. Ikeuchi K, Izawa T and Inada T (2019) Recent progress on the molecular mechanism of quality controls induced by ribosome stalling. Front Genet 9, 743 https://doi.org/10.3389/fgene.2018.00743
  13. Shoemaker CJ and Green R (2012) Translation drives mRNA quality control. Nat Struct Mol Biol 19, 594-601 https://doi.org/10.1038/nsmb.2301
  14. Garshott DM, Sundaramoorthy E, Leonard M and Bennett EJ (2020) Distinct regulatory ribosomal ubiquitylation events are reversible and hierarchically organized. Elife 9, e54023 https://doi.org/10.7554/eLife.54023
  15. Higgins R, Gendron JM, Rising L et al (2015) The unfolded protein response triggers site-specific regulatory ubiquitylation of 40S ribosomal proteins. Mol Cell 59, 35-49 https://doi.org/10.1016/j.molcel.2015.04.026
  16. Juszkiewicz S, Chandrasekaran V, Lin Z, Kraatz S, Ramakrishnan V and Hegde RS (2018) ZNF598 is a quality control sensor of collided ribosomes. Mol Cell 72, 469-481 e467 https://doi.org/10.1016/j.molcel.2018.08.037
  17. Vind AC, Snieckute G, Blasius M et al (2020) ZAKalpha recognizes stalled ribosomes through partially redundant sensor domains. Mol Cell 78, 700-713 e707 https://doi.org/10.1016/j.molcel.2020.03.021
  18. Wu CC, Peterson A, Zinshteyn B, Regot S and Green R (2020) Ribosome collisions trigger general stress responses to regulate cell fate. Cell 182, 404-416 e414 https://doi.org/10.1016/j.cell.2020.06.006
  19. Yan LL and Zaher HS (2021) Ribosome quality control antagonizes the activation of the integrated stress response on colliding ribosomes. Mol Cell 81, 614-628 e614 https://doi.org/10.1016/j.molcel.2020.11.033
  20. Juszkiewicz S and Hegde RS (2017) Initiation of quality control during poly(A) translation requires site-specific ribosome ubiquitination. Mol Cell 65, 743-750 e744 https://doi.org/10.1016/j.molcel.2016.11.039
  21. Sundaramoorthy E, Leonard M, Mak R, Liao J, Fulzele A and Bennett EJ (2017) ZNF598 and RACK1 regulate mammalian ribosome-associated quality control function by mediating regulatory 40S ribosomal ubiquitylation. Mol Cell 65, 751-760 e754 https://doi.org/10.1016/j.molcel.2016.12.026
  22. Ikeuchi K, Tesina P, Matsuo Y et al (2019) Collided ribosomes form a unique structural interface to induce Hel2-driven quality control pathways. EMBO J 38, e100276
  23. Hashimoto S, Sugiyama T, Yamazaki R, Nobuta R and Inada T (2020) Identification of a novel trigger complex that facilitates ribosome-associated quality control in mammalian cells. Sci Rep 10, 3422 https://doi.org/10.1038/s41598-020-60241-w
  24. Juszkiewicz S, Speldewinde SH, Wan L, Svejstrup JQ and Hegde RS (2020) The ASC-1 complex disassembles collided ribosomes. Mol Cell 79, 603-614 e608 https://doi.org/10.1016/j.molcel.2020.06.006
  25. Matsuo Y, Ikeuchi K, Saeki Y et al (2017) Ubiquitination of stalled ribosome triggers ribosome-associated quality control. Nat Commun 8, 159 https://doi.org/10.1038/s41467-017-00188-1
  26. D'Orazio KN, Wu CC, Sinha N, Loll-Krippleber R, Brown GW and Green R (2019) The endonuclease Cue2 cleaves mRNAs at stalled ribosomes during No Go Decay. Elife 8, e49117 https://doi.org/10.7554/eLife.49117
  27. Glover ML, Burroughs AM, Monem PC et al (2020) NONU-1 encodes a conserved endonuclease required for mRNA translation surveillance. Cell Rep 30, 4321-4331 e4324 https://doi.org/10.1016/j.celrep.2020.03.023
  28. Meyer C, Garzia A, Morozov P, Molina H and Tuschl T (2020) The G3BP1-family-USP10 deubiquitinase complex rescues ubiquitinated 40S subunits of ribosomes stalled in translation from lysosomal degradation. Mol Cell 77, 1193-1205 e1195 https://doi.org/10.1016/j.molcel.2019.12.024
  29. Hickey KL, Dickson K, Cogan JZ et al (2020) GIGYF2 and 4EHP inhibit translation initiation of defective messenger RNAs to assist ribosome-associated quality control. Mol Cell 79, 950-962 e956 https://doi.org/10.1016/j.molcel.2020.07.007
  30. Juszkiewicz S, Slodkowicz G, Lin Z, Freire-Pritchett P, Peak-Chew SY and Hegde RS (2020) Ribosome collisions trigger cis-acting feedback inhibition of translation initiation. Elife 9, e60038 https://doi.org/10.7554/eLife.60038
  31. Weber R, Chung MY, Keskeny C et al (2020) 4EHP and GIGYF1/2 mediate translation-coupled messenger rna decay. Cell Rep 33, 108262 https://doi.org/10.1016/j.celrep.2020.108262
  32. Sinha NK, Ordureau A, Best K et al (2020) EDF1 coordinates cellular responses to ribosome collisions. Elife 9, e58828 https://doi.org/10.7554/eLife.58828
  33. Garzia A, Jafarnejad SM, Meyer C et al (2017) The E3 ubiquitin ligase and RNA-binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs. Nat Commun 8, 16056 https://doi.org/10.1038/ncomms16056
  34. Hildebrandt A, Bruggemann M, Ruckle C et al (2019) The RNA-binding ubiquitin ligase MKRN1 functions in ribosome-associated quality control of poly(A) translation. Genome Biol 20, 216 https://doi.org/10.1186/s13059-019-1814-0
  35. DiGiuseppe S, Rollins MG, Bartom ET and Walsh D (2018) ZNF598 plays distinct roles in interferon-stimulated gene expression and poxvirus protein synthesis. Cell Rep 23, 1249-1258 https://doi.org/10.1016/j.celrep.2018.03.132
  36. Sitron CS and Brandman O (2019) CAT tails drive degradation of stalled polypeptides on and off the ribosome. Nat Struct Mol Biol 26, 450-459 https://doi.org/10.1038/s41594-019-0230-1
  37. Bengtson MH and Joazeiro CA (2010) Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 467, 470-473 https://doi.org/10.1038/nature09371
  38. Brandman O, Stewart-Ornstein J, Wong D et al (2012) A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 151, 1042-1054 https://doi.org/10.1016/j.cell.2012.10.044
  39. Defenouillere Q, Yao Y, Mouaikel J et al (2013) Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products. Proc Natl Acad Sci U S A 110, 5046-5051 https://doi.org/10.1073/pnas.1221724110
  40. Lyumkis D, Oliveira dos Passos D, Tahara EB et al (2014) Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex. Proc Natl Acad Sci U S A 111, 15981-15986 https://doi.org/10.1073/pnas.1413882111
  41. Shao S, Brown A, Santhanam B and Hegde RS (2015) Structure and assembly pathway of the ribosome quality control complex. Mol Cell 57, 433-444 https://doi.org/10.1016/j.molcel.2014.12.015
  42. Shen PS, Park J, Qin Y et al (2015) Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains. Science 347, 75-78 https://doi.org/10.1126/science.1259724
  43. Kuroha K, Zinoviev A, Hellen CUT and Pestova TV (2018) Release of ubiquitinated and non-ubiquitinated nascent chains from stalled mammalian ribosomal complexes by ANKZF1 and Ptrh1. Mol Cell 72, 286-302 e288 https://doi.org/10.1016/j.molcel.2018.08.022
  44. Verma R, Reichermeier KM, Burroughs AM et al (2018) Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes. Nature 557, 446-451 https://doi.org/10.1038/s41586-018-0022-5
  45. Zurita Rendon O, Fredrickson EK, Howard CJ et al (2018) Vms1p is a release factor for the ribosome-associated quality control complex. Nat Commun 9, 2197 https://doi.org/10.1038/s41467-018-04564-3
  46. Verma R, Oania RS, Kolawa NJ and Deshaies RJ (2013) Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome. Elife 2, e00308 https://doi.org/10.7554/eLife.00308
  47. Thrun A, Garzia A, Kigoshi-Tansho Y et al (2021) Convergence of mammalian RQC and C-end rule proteolytic pathways via alanine tailing. Mol Cell 81, 2112-2122 e2117 https://doi.org/10.1016/j.molcel.2021.03.004
  48. Udagawa T, Seki M, Okuyama T et al (2021) Failure to degrade CAT-Tailed proteins disrupts neuronal morphogenesis and cell survival. Cell Rep 34, 108599 https://doi.org/10.1016/j.celrep.2020.108599
  49. Choe YJ, Park SH, Hassemer T et al (2016) Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature 531, 191-195 https://doi.org/10.1038/nature16973
  50. Kostova KK, Hickey KL, Osuna BA et al (2017) CAT-tailing as a fail-safe mechanism for efficient degradation of stalled nascent polypeptides. Science 357, 414-417 https://doi.org/10.1126/science.aam7787
  51. Lytvynenko I, Paternoga H, Thrun A et al (2019) Alanine tails signal proteolysis in bacterial ribosome-associated quality control. Cell 178, 76-90 e22 https://doi.org/10.1016/j.cell.2019.05.002
  52. Osuna BA, Howard CJ, Kc S, Frost A and Weinberg DE (2017) In vitro analysis of RQC activities provides insights into the mechanism and function of CAT tailing. Elife 6, e27949 https://doi.org/10.7554/eLife.27949
  53. Yonashiro R, Tahara EB, Bengtson MH et al (2016) The Rqc2/Tae2 subunit of the ribosome-associated quality control (RQC) complex marks ribosome-stalled nascent polypeptide chains for aggregation. Elife 5, e11794 https://doi.org/10.7554/eLife.11794
  54. Koren I, Timms RT, Kula T, Xu Q, Li MZ and Elledge SJ (2018) The eukaryotic proteome is shaped by E3 ubiquitin ligases targeting C-terminal degrons. Cell 173, 1622-1635 e1614 https://doi.org/10.1016/j.cell.2018.04.028
  55. Lin HC, Yeh CW, Chen YF et al (2018) C-terminal end-directed protein elimination by CRL2 ubiquitin ligases. Mol Cell 70, 602-613 e603 https://doi.org/10.1016/j.molcel.2018.04.006
  56. Rusnac DV, Lin HC, Canzani D et al (2018) Recognition of the diglycine C-end degron by CRL2(KLHDC2) ubiquitin ligase. Mol Cell 72, 813-822 e814 https://doi.org/10.1016/j.molcel.2018.10.021
  57. Simms CL, Yan LL and Zaher HS (2017) Ribosome collision is critical for quality control during No-Go Decay. Mol Cell 68, 361-373 e365 https://doi.org/10.1016/j.molcel.2017.08.019
  58. Young DJ, Meydan S and Guydosh NR (2021) 40S ribosome profiling reveals distinct roles for Tma20/Tma22 (MCT-1/DENR) and Tma64 (eIF2D) in 40S subunit recycling. Nat Commun 12, 2976 https://doi.org/10.1038/s41467-021-23223-8
  59. Phillips BP and Miller EA (2020) Ribosome-associated quality control of membrane proteins at the endoplasmic reticulum. J Cell Sci 133, jcs251983 https://doi.org/10.1242/jcs.251983
  60. Wang L and Ye Y (2020) Clearing traffic jams during protein translocation across membranes. Front Cell Dev Biol 8, 610689 https://doi.org/10.3389/fcell.2020.610689
  61. Hegde RS and Kang SW (2008) The concept of translocational regulation. J Cell Biol 182, 225-232 https://doi.org/10.1083/jcb.200804157
  62. Nyathi Y, Wilkinson BM and Pool MR (2013) Co-translational targeting and translocation of proteins to the endoplasmic reticulum. Biochim Biophys Acta 1833, 2392-2402 https://doi.org/10.1016/j.bbamcr.2013.02.021
  63. Arribere JA and Fire AZ (2018) Nonsense mRNA suppression via nonstop decay. Elife 7, e33292 https://doi.org/10.7554/eLife.33292
  64. Han P, Shichino Y, Schneider-Poetsch T et al (2020) Genome-wide survey of ribosome collision. Cell Rep 31, 107610 https://doi.org/10.1016/j.celrep.2020.107610
  65. Arakawa S, Yunoki K, Izawa T, Tamura Y, Nishikawa S and Endo T (2016) Quality control of nonstop membrane proteins at the ER membrane and in the cytosol. Sci Rep 6, 30795 https://doi.org/10.1038/srep30795
  66. Cesaratto F, Sasset L, Myers MP, Re A, Petris G and Burrone OR (2019) BiP/GRP78 mediates ERAD targeting of proteins produced by membrane-bound ribosomes stalled at the STOP-codon. J Mol Biol 431, 123-141 https://doi.org/10.1016/j.jmb.2018.10.009
  67. Crowder JJ, Geigges M, Gibson RT et al (2015) Rkr1/Ltn1 ubiquitin ligase-mediated degradation of translationally stalled endoplasmic reticulum proteins. J Biol Chem 290, 18454-18466 https://doi.org/10.1074/jbc.M115.663559
  68. Wu X and Rapoport TA (2018) Mechanistic insights into ER-associated protein degradation. Curr Opin Cell Biol 53, 22-28 https://doi.org/10.1016/j.ceb.2018.04.004
  69. von der Malsburg K, Shao S and Hegde RS (2015) The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon. Mol Biol Cell 26, 2168-2180 https://doi.org/10.1091/mbc.E15-01-0040
  70. Lakshminarayan R, Phillips BP, Binnian IL et al (2020) Pre-emptive quality control of a misfolded membrane protein by ribosome-driven effects. Curr Biol 30, 854-864 e855 https://doi.org/10.1016/j.cub.2019.12.060
  71. Matsuo Y and Inada T (2021) The ribosome collision sensor Hel2 functions as preventive quality control in the secretory pathway. Cell Rep 34, 108877 https://doi.org/10.1016/j.celrep.2021.108877
  72. Wang L, Xu Y, Rogers H et al (2020) UFMylation of RPL26 links translocation-associated quality control to endoplasmic reticulum protein homeostasis. Cell Res 30, 5-20 https://doi.org/10.1038/s41422-019-0236-6
  73. Izawa T, Park SH, Zhao L, Hartl FU and Neupert W (2017) Cytosolic protein Vms1 links ribosome quality control to mitochondrial and cellular homeostasis. Cell 171, 890-903 e818 https://doi.org/10.1016/j.cell.2017.10.002
  74. Su T, Izawa T, Thoms M et al (2019) Structure and function of Vms1 and Arb1 in RQC and mitochondrial proteome homeostasis. Nature 570, 538-542 https://doi.org/10.1038/s41586-019-1307-z
  75. Wu Z, Tantray I, Lim J et al (2019) MISTERMINATE mechanistically links mitochondrial dysfunction with proteostasis failure. Mol Cell 75, 835-848 e838 https://doi.org/10.1016/j.molcel.2019.06.031
  76. Wu Z, Wang Y, Lim J et al (2018) Ubiquitination of ABCE1 by NOT4 in response to mitochondrial damage links co-translational quality control to PINK1-directed mitophagy. Cell Metab 28, 130-144 e137 https://doi.org/10.1016/j.cmet.2018.05.007
  77. Defenouillere Q, Zhang E, Namane A, Mouaikel J, Jacquier A and Fromont-Racine M (2016) Rqc1 and Ltn1 prevent C-terminal alanine-threonine tail (CAT-tail)-induced protein aggregation by efficient recruitment of Cdc48 on stalled 60S subunits. J Biol Chem 291, 12245-12253 https://doi.org/10.1074/jbc.M116.722264
  78. Anton LC and Yewdell JW (2014) Translating DRiPs: MHC class I immunosurveillance of pathogens and tumors. J Leukoc Biol 95, 551-562 https://doi.org/10.1189/jlb.1113599
  79. Yewdell JW (2011) DRiPs solidify: progress in understanding endogenous MHC class I antigen processing. Trends Immunol 32, 548-558 https://doi.org/10.1016/j.it.2011.08.001
  80. Trentini DB, Pecoraro M, Tiwary S et al (2020) Role for ribosome-associated quality control in sampling proteins for MHC class I-mediated antigen presentation. Proc Natl Acad Sci U S A 117, 4099-4108 https://doi.org/10.1073/pnas.1914401117
  81. Chu J, Hong NA, Masuda CA et al (2009) A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration. Proc Natl Acad Sci U S A 106, 2097-2103 https://doi.org/10.1073/pnas.0812819106
  82. Ahmed A, Wang M, Bergant G et al (2021) Biallelic loss-of-function variants in NEMF cause central nervous system impairment and axonal polyneuropathy. Hum Genet 140, 579-592 https://doi.org/10.1007/s00439-020-02226-3
  83. Anazi S, Maddirevula S, Faqeih E et al (2017) Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Mol Psychiatry 22, 615-624 https://doi.org/10.1038/mp.2016.113
  84. Martin PB, Kigoshi-Tansho Y, Sher RB et al (2020) NEMF mutations that impair ribosome-associated quality control are associated with neuromuscular disease. Nat Commun 11, 4625 https://doi.org/10.1038/s41467-020-18327-6
  85. Nowakowski TJ, Bhaduri A, Pollen AA et al (2017) Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318-1323 https://doi.org/10.1126/science.aap8809
  86. Ishimura R, Nagy G, Dotu I et al (2014) Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science 345, 455-459 https://doi.org/10.1126/science.1249749
  87. Ishimura R, Nagy G, Dotu I, Chuang JH and Ackerman SL (2016) Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation. Elife 5, e14295 https://doi.org/10.7554/eLife.14295
  88. Terrey M, Adamson SI, Gibson AL et al (2020) GTPBP1 resolves paused ribosomes to maintain neuronal homeostasis. Elife 9, e62731 https://doi.org/10.7554/eLife.62731
  89. Bertoli-Avella AM, Garcia-Aznar JM, Brandau O et al (2018) Biallelic inactivating variants in the GTPBP2 gene cause a neurodevelopmental disorder with severe intellectual disability. Eur J Hum Genet 26, 592-598 https://doi.org/10.1038/s41431-018-0097-3
  90. Carter MT, Venkateswaran S, Shapira-Zaltsberg G et al (2019) Clinical delineation of GTPBP2-associated neuroectodermal syndrome: report of two new families and review of the literature. Clin Genet 95, 601-606 https://doi.org/10.1111/cge.13523
  91. Jaberi E, Rohani M, Shahidi GA et al (2016) Identification of mutation in GTPBP2 in patients of a family with neurodegeneration accompanied by iron deposition in the brain. Neurobiol Aging 38, 216 e211-216 e218
  92. O'Connell AE, Gerashchenko MV, O'Donohue MF et al (2019) Mammalian Hbs1L deficiency causes congenital anomalies and developmental delay associated with Pelota depletion and 80S monosome accumulation. PLoS Genet 15, e1007917 https://doi.org/10.1371/journal.pgen.1007917
  93. Sankaran VG, Joshi M, Agrawal A et al (2013) Rare complete loss of function provides insight into a pleiotropic genome-wide association study locus. Blood 122, 3845-3847 https://doi.org/10.1182/blood-2013-09-528315
  94. Terrey M, Adamson SI, Chuang JH and Ackerman SL (2021) Defects in translation-dependent quality control pathways lead to convergent molecular and neurodevelopmental pathology. Elife 10, e66904 https://doi.org/10.7554/eLife.66904
  95. Li S, Wu Z, Tantray I et al (2020) Quality-control mechanisms targeting translationally stalled and C-terminally extended poly(GR) associated with ALS/FTD. Proc Natl Acad Sci U S A 117, 25104-25115 https://doi.org/10.1073/pnas.2005506117
  96. Eshraghi M, Karunadharma PP, Blin J et al (2021) Mutant Huntingtin stalls ribosomes and represses protein synthesis in a cellular model of Huntington disease. Nat Commun 12, 1461 https://doi.org/10.1038/s41467-021-21637-y
  97. Yang J, Hao X, Cao X, Liu B and Nystrom T (2016) Spatial sequestration and detoxification of Huntingtin by the ribosome quality control complex. Elife 5, e11792 https://doi.org/10.7554/eLife.11792
  98. Zheng J, Yang J, Choe YJ et al (2017) Role of the ribosomal quality control machinery in nucleocytoplasmic translocation of polyQ-expanded huntingtin exon-1. Biochem Biophys Res Commun 493, 708-717 https://doi.org/10.1016/j.bbrc.2017.08.126
  99. Krumm N, Turner TN, Baker C et al (2015) Excess of rare, inherited truncating mutations in autism. Nat Genet 47, 582-588 https://doi.org/10.1038/ng.3303
  100. Wang T, Guo H, Xiong B et al (2016) De novo genic mutations among a Chinese autism spectrum disorder cohort. Nat Commun 7, 13316 https://doi.org/10.1038/ncomms13316
  101. Thyme SB, Pieper LM, Li EH et al (2019) Phenotypic landscape of schizophrenia-associated genes defines candidates and their shared functions. Cell 177, 478-491 e420 https://doi.org/10.1016/j.cell.2019.01.048
  102. Saini P, Rudakou U, Yu E et al (2021) Association study of DNAJC13, UCHL1, HTRA2, GIGYF2, and EIF4G1 with Parkinson's disease. Neurobiol Aging 100, 119 e117-119 e113
  103. Giovannone B, Tsiaras WG, de la Monte S et al (2009) GIGYF2 gene disruption in mice results in neurodegeneration and altered insulin-like growth factor signaling. Hum Mol Genet 18, 4629-4639 https://doi.org/10.1093/hmg/ddp430
  104. Adomavicius T, Guaita M, Zhou Y et al (2019) The structural basis of translational control by eIF2 phosphorylation. Nat Commun 10, 2136 https://doi.org/10.1038/s41467-019-10167-3
  105. Jennings MD, Kershaw CJ, Adomavicius T and Pavitt GD (2017) Fail-safe control of translation initiation by dissociation of eIF2alpha phosphorylated ternary complexes. Elife 6, e24542 https://doi.org/10.7554/eLife.24542
  106. Krishnamoorthy T, Pavitt GD, Zhang F, Dever TE and Hinnebusch AG (2001) Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol Cell Biol 21, 5018-5030 https://doi.org/10.1128/MCB.21.15.5018-5030.2001
  107. Dong J, Qiu H, Garcia-Barrio M, Anderson J and Hinnebusch AG (2000) Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell 6, 269-279 https://doi.org/10.1016/S1097-2765(00)00028-9
  108. Inglis AJ, Masson GR, Shao S et al (2019) Activation of GCN2 by the ribosomal P-stalk. Proc Natl Acad Sci U S A 116, 4946-4954 https://doi.org/10.1073/pnas.1813352116
  109. Harding HP, Ordonez A, Allen F et al (2019) The ribosomal P-stalk couples amino acid starvation to GCN2 activation in mammalian cells. Elife 8, e50149 https://doi.org/10.7554/eLife.50149
  110. Jandhyala DM, Ahluwalia A, Obrig T and Thorpe CM (2008) ZAK: a MAP3Kinase that transduces Shiga toxin- and ricin-induced proinflammatory cytokine expression. Cell Microbiol 10, 1468-1477 https://doi.org/10.1111/j.1462-5822.2008.01139.x
  111. Wang X, Mader MM, Toth JE et al (2005) Complete inhibition of anisomycin and UV radiation but not cytokine induced JNK and p38 activation by an aryl-substituted dihydropyrrolopyrazole quinoline and mixed lineage kinase 7 small interfering RNA. J Biol Chem 280, 19298-19305 https://doi.org/10.1074/jbc.M413059200
  112. Canovas B and Nebreda AR (2021) Diversity and versatility of p38 kinase signalling in health and disease. Nat Rev Mol Cell Biol 22, 346-366 https://doi.org/10.1038/s41580-020-00322-w
  113. Coffey ET (2014) Nuclear and cytosolic JNK signalling in neurons. Nat Rev Neurosci 15, 285-299 https://doi.org/10.1038/nrn3729
  114. Meydan S and Guydosh NR (2020) Disome and trisome profiling reveal genome-wide targets of ribosome quality control. Mol Cell 79, 588-602 e586 https://doi.org/10.1016/j.molcel.2020.06.010
  115. Arpat AB, Liechti A, De Matos M, Dreos R, Janich P and Gatfield D (2020) Transcriptome-wide sites of collided ribosomes reveal principles of translational pausing. Genome Res 30, 985-999 https://doi.org/10.1101/gr.257741.119
  116. Zhao T, Chen YM, Li Y et al (2021) Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding. Genome Biol 22, 16 https://doi.org/10.1186/s13059-020-02256-0
  117. Klauer AA and van Hoof A (2012) Degradation of mRNAs that lack a stop codon: a decade of nonstop progress. Wiley Interdiscip Rev RNA 3, 649-660 https://doi.org/10.1002/wrna.1124
  118. Costa-Mattioli M and Walter P (2020) The integrated stress response: from mechanism to disease. Science 368, eaat5314 https://doi.org/10.1126/science.aat5314
  119. Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A and Gorman AM (2016) The integrated stress response. EMBO Rep 17, 1374-1395 https://doi.org/10.15252/embr.201642195
  120. Wek RC (2018) Role of eIF2alpha Kinases in Translational Control and Adaptation to Cellular Stress. Cold Spring Harb Perspect Biol 10, e032870
  121. Spielmann M, Kakar N, Tayebi N et al (2016) Exome sequencing and CRISPR/Cas genome editing identify mutations of ZAK as a cause of limb defects in humans and mice. Genome Res 26, 183-191 https://doi.org/10.1101/gr.199430.115
  122. Asih PR, Prikas E, Stefanoska K, Tan ARP, Ahel HI and Ittner A (2020) Functions of p38 MAP kinases in the central nervous system. Front Mol Neurosci 13, 570586 https://doi.org/10.3389/fnmol.2020.570586
  123. Bond S, Lopez-Lloreda C, Gannon PJ, Akay-Espinoza C and Jordan-Sciutto KL (2020) The integrated stress response and phosphorylated eukaryotic initiation factor 2alpha in neurodegeneration. J Neuropathol Exp Neurol 79, 123-143 https://doi.org/10.1093/jnen/nlz129