DOI QR코드

DOI QR Code

Review on the mechanism for the reduction of raphide-induced toxicity via processing of Pinelliae Tuber and Arisaematis Rhizoma

포제(炮製)에 의한 반하(半夏)와 천남성(天南星)의 침상결정 유발 독성 감소 기전 고찰

  • Kim, Jung-Hoon (Division of Pharmacology, School of Korean Medicine, Pusan National Univ.) ;
  • Lee, Guemsan (Research Center of Traditional Korean Medicine, Wonkwang Univ.) ;
  • Choi, Goya (Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine) ;
  • Kim, Young-Sik (Department of Herbology, College of Korean Medicine, Woosuk Univ.) ;
  • Lee, Seungho (Department of Pathology, College of Korean Medicine, Woosuk Univ.) ;
  • Kim, Hongjun (Department of Formula Science, College of Korean Medicine, Woosuk Univ.)
  • 김정훈 (부산대학교 한의학전문대학원 약물의학교실) ;
  • 이금산 (원광대학교 한국전통의학연구소) ;
  • 최고야 (한국한의학연구원 한약자원연구센터) ;
  • 김영식 (우석대학교 한의과대학 본초학교실) ;
  • 이승호 (우석대학교 한의과대학 병리학교실) ;
  • 김홍준 (우석대학교 한의과대학 방제학교실)
  • Received : 2021.07.21
  • Accepted : 2021.09.25
  • Published : 2021.09.30

Abstract

Objectives : The processing of Pinelliae Tuber and Arisaematis Rhizoma is a crucial step to reduce the severe acrid irritation mainly due to the needle-like crystals (raphides). Ginger, alum and bile juice have been used as adjuvant materials for the processing. Methods : Bibliographic research on ancient processing and experimental processing was performed to investigate the toxicity reduction mechanisms of the processing with ginger, alum and bile juice. Results : Ginger has been a major adjuvant for the processing of Pinelliae Tuber, followed by alum and bile juice since Song (宋) and Myeong (明) dynasties, and Arisaematis Rhizoma has been mainly used as Damnamseong (膽南星). The raphides consisting of calcium oxalate, lectin, agglutinin and polysaccharides can induce acrid irritation and the inflammatory reactions. The lipophilic components in the ginger denatured the structure of raphides and 6-gingerol-contained ginger extract attenuated the inflammatory reaction. The calcium ion (Ca2+) of calcium oxalate was substituted to the aluminium ion (Al3+) of the alum, which damaged the calcium oxalate structure. Lectin attached to the surface of raphides was dissolved in alum solution and consequently its structure was denatured. The cholate in the bile juice formed the complex with the oxalate anion or the calcium cation. Moreover, the enzymes activated by Lactobacillus or Bifidobacterium during the fermentation promoted the fragmentation of oxalate. Conclusion : The adjuvant materials damaged the raphides by denaturing or degrading the calcium oxalate, resulting in the reduction of acrid irritation. Further experimental studies would support the toxicity reduction mechanism of the processing.

Keywords

Acknowledgement

운곡(耘谷) 주영승(朱榮丞) 교수님의 영예로운 은퇴를 축하드립니다. 더불어 그동안 미욱한 제자들을 너그러이 지도해주심에 깊이 감사드립니다. 앞으로도 저희 제자들은 교수님의 뜻을 받들어 연구와 교육에 매진하겠습니다.

References

  1. Ministry of Korean Food and Drug Safety. The Korean Pharmacopoeia. KFDA Notification No. 2019-102.
  2. Herbology editorial committee of Korean medicine schools. Herbology. Seoul : Yeonglimsa. 2017 : 485-8.
  3. Zhong LY, Wu H, Zhang L, Zhu T. Overview of toxic components and processing mechanism of rhizoma Pinelliae. Shanghai J Tradit Chin Med. 2007 ; 41 : 72-4.
  4. Sin SM, Cha JH, Kim GT, Byun SH, Ko H, Leem KH. Case of alergic angioedema caused by Arisaematis Rhizoma ingestion. Korean J Orient Physiol Pathol. 2009 ; 23 : 259-62.
  5. Suzuki M. Study on the irritating substance of Pinellia ternata Breitenbach (Araceae). Arzneimittelforschung. 1969 ; 19 : 1307-9.
  6. Zhong LY, Wu H. Current researching situation of mucosal irritant compontents in Acacae family plants. Chin J Chin Mat Med. 2006 ; 31 : 1561-3.
  7. Zhong LY, Wu H, Zhang L, Zhu T. Overview of toxic components and processing mechanism of Rhizoma Pinelliae. Shanghai J Tradit Chin Med. 2007 ; 41 : 72-4.
  8. Liu X, Wang Q, Song G, Zhang G, Ye Z, Williamson EM. The classification and application of toxic Chinese Materia Medica. Phytother Res. 2014 ; 28: 334-7. https://doi.org/10.1002/ptr.5006
  9. Chen S, Li Y, Jin W, Chen Y, Liu X, Lu F. Selective breeding of oxygen-tolerant and oxalate-degrading lactic acid bacteria by protoplast fusion. Adv Mat Res. 2013 ; 750-752 : 1489-94. https://doi.org/10.4028/www.scientific.net/AMR.750-752.1489
  10. Volk GM, Lynch-Holm VJ, Kostman TA, Goss LJ, Franceschi VR. The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes Leaves. Plant Biol. 2002 ; 4 : 34-45. https://doi.org/10.1055/s-2002-20434
  11. Ward D, Spiegel M, Saltz D. Gazelle herbivory and interpopulation differences in calcium oxalate content of leaves of a desert lily. J Chem Ecol. 1997 ; 23 : 333-46. https://doi.org/10.1023/B:JOEC.0000006363.34360.9d
  12. Bradbury JH, Nixon RW. The acridity of raphides from the edible aroids. J Sci Food Agric. 1998 ; 76 : 608-16. https://doi.org/10.1002/(SICI)1097-0010(199804)76:4<608::AID-JSFA996>3.0.CO;2-2
  13. Arnott HJ, Webb MA. Twinned raphides of calcium oxalate in grape (Vitis): Implications for crystal stability and function. Int J Plant Sci. 2000 ; 161: 133-42. https://doi.org/10.1086/314230
  14. Beasley V. Plants of the Araceae Family (Plants Containing Oxalate Crystals and Histamine Releasers). Vet Hum Toxicol. 1999 ; 899 : A2639.
  15. Jadhav DR, Gugloth R. Poisoning due to Arisaema triphyllum Ingestion. Indian J Crit Care Med. 2019 ; 23 : 242-43. https://doi.org/10.5005/jp-journals-10071-23171
  16. Ryoo SM, Sohn CH, Oh B, Kim WY, Lim KS, Lee CC. Oropharyngeal airway obstruction after the accidental ingestion of Arisaema amurense. J Emerg Med. 2013 ; 45 : 352-4. https://doi.org/10.1016/j.jemermed.2013.01.029
  17. Park S, Yeom S, Han S, Lee S, Ju S. A case of Arisaematis Rhizoma poisoning. J Korean Soc Emerg Med. 2014 ; 25 : 788-90.
  18. Lei X[雷斅]. Leigongpaozhilun[雷公炮炙論]. North and South dynasty period. In Wang XF, ed. Leigongpaozhilun(Jiyiben)[雷公炮炙論(輯佚本)]. Shanghia: Shanghai University of TCM Publishing House. 1986: 97.
  19. Tao HJ[陶弘景]. Mingyibielu[名醫別錄]. Liang period, 456-536. In: Shang ZJ, ed. Mingyibielu(Jijiaoben) [名醫別錄(輯校本)]. Beijing: People's Medical Publishing House. 1986: 242.
  20. Tao HJ[陶弘景]. Bencaojingjizhu[本草經集注]. Liang period, 456-536. In: Shang ZJ, Shang YS, ed. Bencaojingjizhu(Jijiaoben)[本草經集注(輯校本)]. Beijing: People's Medical Publishing House. 1994: 354.
  21. Unknown. Rihuazibencao[日華子本草]. (Five Dynasties period, 907-960). In :Shang ZJ ed. Rihuazibencao [日華子本草] and Shukboncho[蜀本草]. Hefei: Anhui Science & Technology Press. 2005: 109.
  22. Zhang YX[掌禹錫] et al. Jiayoubencao[嘉祐本草]. Song period, 1060. In :Shang ZJ ed. Jiayoubencao(Jifuben) 嘉祐本草(輯複本)]. Beijing: Chinese Ancient Literature Press. 2009: 237-8.
  23. Su S[蘇頌], et al. Bencaotujing[本草圖經]. Song period, 1061. In : Shang ZJ, ed. Bencaotujing[本草圖經]. Hefei: Anhui Science & Technology Press. 1994: 265-6.
  24. Dang SM[唐愼微]. Jingshizhengleidaguanbencao[經史證類大觀本草, 大觀本草]. Song period, 1108. In :Shang ZJ ed. daguanbencao[大觀本草]. Hefei: Anhui Science and Technology Press. 2002: 341-3.
  25. Chen SW[陳師文] et al. Taipinghuiminhejijufang[太平惠民和劑局方]. Song period, 1107. Taipinghuiminhejijufang[太平惠民和劑局方]. Taibei: Xuanfeng Press. 1975: 6.
  26. Zhao J[趙佶]. Shengjizonglu[聖濟總錄] Song period, 1118. Shengjizonglu[聖濟總錄]. Seoul: Euiseongdang. 1993: 857, 1187.
  27. Lee G[李杲]. Zhenzhunangbuyiyaoxingfu[珍珠囊補遺藥性賦]. Yuan period. Zhenzhunangbuyiyaoxingfu [珍珠囊補遺藥性賦] and Leigongpaozhiyaoxingjie[雷公炮製药性解]. Shanghai: Shanghai Science and Technology Press. 1986: 56.
  28. Wang HG[王好古]. Tangyebecncao[湯液本草]. Yuan period, 1289. In: Zhang YP, ed. Tangyebecncao[湯液本草]. Beijing: China Medical Science & Technology Press. 2012: 62-3.
  29. Zhu ZH[朱震亨]. Bencaoyanyibuyi[本草衍義補遺]. Yuan period, 1347. In: Jin JP ed. Geumwonsadaegauihakjeonseo.Ha[金元四大家醫學全書.下]. Seoul: Bubin Publisher. 2007: 72.
  30. Liu WQ[劉文泰], et al. Bencaopinhuijingyao[本草品彙精要]. Ming period, 1505. In: Lu Z, Li ZY, eds. Bencaopinhuijingyao[本草品彙精要]. Beijing: China Press of Traditional Chinese Medicine. 2013: 285-7, 316-7.
  31. Xue J[薛己]. Bencaoyueyan[本草約言]. Ming period. In: Zang SH, Yang TZ, Du FJ, eds. Bencaoyueyan [本草約言]. Beijing: China Press of Traditional Chinese Medicine. 2015: 17-8.
  32. Chen JM[陳嘉謨]. Bencaomengquan[本草蒙筌]. Ming period, 1565. In: Zhang YS, Han XJ, Zhao HL, eds. Bencaomengquan[本草蒙筌]. Beijing: Chinese Ancient Literature Press. 2008: 137-8.
  33. Li C[李梴]. Yixuerumen[醫學入門]. Ming period, 1575. Pyeonjueuihakipmum[編註醫學入門]. Seoul: Bubin Publisher. 2006: 190, 216.
  34. Li SZ[李時珍]. Bencaogangmu[本草綱目]. Ming period, 1578. In: Z Q, ed. Bencaogangmu(jiaodianben) 本草綱目(校點本)]. Beijing: People's Health Publishing House. 1982: 1185-90, 1192-1200.
  35. Li ZZ[李中梓]. Leigongpaozhiyaoxingjie[雷公炮製藥性解]. Published in 1622. (Myeong period). Zhenzhunangbuyiyaoxingfu[珍珠囊補遺藥性賦] and Leigongpaozhiyaoxingjie[雷公炮製药性解] . Shanghai: Shanghai Science and Technology Press. 1986: 124-5.
  36. Miao XY[繆希雍]. Paozhidafa[炮炙大法]. Ming period, 1622. In: Cheng L, ed. Paozhidafa[炮炙大法]. Beijing: China Medical Science & Technology Press. 2012: 21-3.
  37. Li ZZ[李中梓]. Bencaozhengyao[本草徵要]. Ming period, 1637. In: Bao LF, ed. Lizhongzi Yixuequanshu 李中梓醫學全書]. Beijing: China Press of Traditional Chinese Medicine. 1999: 126.
  38. Wang A[汪昻]. Bencaoyidu[本草易讀]. Ching period. Bencaoyidu[本草易讀]. Taiyuan: Shanxi Science Technology Publishing House. 2015: 241-4.
  39. Wang A[汪昻]. Bencaobeiyao[本草備要]. Ching period, 1694. In: Zheng JS ed. Bencaobeiyao[本草備要]. Beijing: People's Medical Publishing House. 2005: 28-31.
  40. Zhang L[張璐]. Benjingfengyuan[本經逢原]. Ching period, 1695. In: Gu M, Yang YZ, ed. Benjingfengyuan[本經逢原]. Beijing: China Medical Science & Technology Press. 2011: 101-2.
  41. Yan J[嚴潔] et al. Depeibencao[得配本草]. Ching period, 1761. Depeibencao[得配本草]. Taiyuan: Shanxi Science and Technology Press. 2014: 104-6.
  42. Huang GX[黃宮繡]. Bencaoqiuzhen[本草求眞]. Ching period, 1769. In: Wang SM, ed. Bencaoqiuzhen[本草求眞]. Beijing: China Press of Traditional Chinese Medicine. 1997: 118-9, 164-6.
  43. Chen NZ[陳念祖]. Shennongbencaojingdu[神農本草經讀]. Ching period, 1803. In: Lin HG et al, eds. Chenxiuyuanyixuequanshu [陳修園醫學全書] . Beijing: China Press of Traditional Chinese Medicine. 1999: 802.
  44. Yao L[姚瀾]. Bencaofenjing[本草分經]. Ching period, 1840. In: Fan L, ed. Bencaofenjing[本草分經]. Beijing: China Press of Traditional Chinese Medicine. 2015: 57, 89-90.
  45. Ling H[凌奐]. Bencaohaili[本草害利]. Ching period, 1862. Bencaohaili[本草害利]. Beijing: Traditional Chinese Medicine Classics Press. 1982: 94-5.
  46. Zhang XC[張錫純]. Yixuezhongzhongcanxilu.Zhongce 醫學衷中參西錄.中册]. Ching period, 1909. In: Wang YK, Yang YY, Li BZ, eds. Shijiazhuang: Hebei Science & Technology Press. 1985: 90-1.
  47. Cao BZ[曹炳章]. Zengdingweiyaotiaobian[增訂僞藥條辨]. Republic of China, 1927. In: Liu DR, ed. Fuzhou: Fujian Science & Technology Press. 2004: 113-4.
  48. Zhang SY[張壽頤]. Bencaozhengyi[本草正義]. Republic of China, 1932. In: An SY, Kim SI, eds. Bencaozhengyi [本草正義]. Seoul: Jisangsa. 2011: 556-60.
  49. Yu HT[兪孝通] et al. Hyangyakjipseongbang[鄕藥集成方]. Joseon period, 1433. Seoul: Dongyang Medicinal Books. 1973: 626.
  50. Heo J[許浚]. Dongeuibogam[東醫寶鑑]. Joseon period, 1613. Seoul: Bubin Publisher. 2005: 1311, 1314.
  51. Lee G, Doh EJ, Lee SH, Kim JH. Herbological review of Arisaematis Rhizoma Preparata cum Bovis Fel. Korean Herb Med Inf. 2020 ; 8 : 159-66. https://doi.org/10.22674/KHMI-8-2-3
  52. Ministry of Korean Food and Drug Safety. The Korean Herbal Pharmacopoeia. KFDA Notification No. 2020-73.
  53. Commission of Chinese Pharmacopeia. Pharmacopoeia of the Peoples Republic of China. Beijing: China Medical Science Press. 2015: 57-8, 119-21, 261, 420.
  54. Zhao TF, Zhang Q, Zhang W, Wu H, Yu HL, Wang HZ. Study on inflammatory effect of toxic raphides from Pinellia ternate and its correlation with macrophages. China J Chin Mater Med. 2013 ; 38 : 1041-45.
  55. Tang LY, Wu HW, Wang ZJ, He Y, Fu MH, Fang J. Investigation of attenuating toxicity mechanism of processing for Arisaema erubescens (II). Chin J Exp Tradit Med Formulae. 2013 ; 19 : 1-4.
  56. Liang Z, Zhang J, Wong L, Yi T, Chen H, Zhao Z. Characterization of secondary metabolites from the raphides of calcium oxalate contained in three Araceae family plants using laser microdissection and ultra-high performance liquid chromatographyquadrupole/time of flight-mass spectrometry. Eur J Mass Spectrom. 2013 ; 19 : 195-210. https://doi.org/10.1255/ejms.1224
  57. Yu H, Pan Y, Wu H, Ge X, Zhang Q, Zhu F, Cai B. The alum-processing mechanism attenuating toxicity of Araceae Pinellia ternata and Pinellia pedatisecta. Arch Pharm Res. 2015 ; 38 : 1810-21. https://doi.org/10.1007/s12272-015-0556-0
  58. Zhu F, Yu H, Wu H, Shi R, Tao W, Qiu Y. Correlation of Pinellia ternata agglutinin and Pinellia ternata raphides' toxicity. China J Chin Mater Med. 2012 ; 37 : 1007-11.
  59. Yu HL, Zhu FG, Wu H. Study of toxic proteins on raphides from Pinellia ternata and Pinellia pedatisecta Schott. Chin J Tradit Chin Med Pharm. 2011 ; 26 : 1037-42.
  60. Ge XY, Wu H. Analysis of the composition of poisonous raphides in Araceae plant. Chin J Pharm Anal. 2010 ; 30 : 190-3.
  61. Yu HL, Wu H, Zhu FG. Monosaccharides in the saccharides of toxic raphide of four toxic Araceae medicinal herbs. J Nanjing Univ Tradit Chin Med. 2010 ; 26 : 193-5. https://doi.org/10.3969/j.issn.1000-5005.2010.03.011
  62. Wu H, Ge X, Yu H, Chen L. Comparisons of crystal form of raphides to toxicity raphide in four poisonous herbs of Araceae family. China J Chin Mater Med. 2010 ; 35 : 1152-5.
  63. Wu H, Le W, Hong T, Ji R, Ye DJ. Studies on stimulating components of raw Pinellia ternata (Thunb.) (Banxia). China J Chin Mater Med. 1999 ; 24 : 725-63. https://doi.org/10.3321/j.issn:1001-5302.1999.12.007
  64. Wu H, Ji R, Qiu LY, Ye DJ. Studies on quantification indexes in stimulation of raw Rhizoma Pinellia. Chin Tradit Pat Med. 2000 ; 22 : 419-21. https://doi.org/10.3969/j.issn.1001-1528.2000.06.013
  65. Zhong LY, Wu H, Zhang KW, Wang QR. Study on irritation of calcium oxalate crystal in raw Pinellia ternata. China J Chin Mater Med. 2006 ; 31 : 1707-10.
  66. Zhu FG, Shi RJ, Yu HL, Wu H, Tao WT, Gong L. Inflammation-induced effect of toxic raphides from Pinellia ternata. Chin Tradit Herb Drug. 2012 ; 43 : 739-42.
  67. Wu H, Zhong LY. Study on irritation of calcium oxalate crystal in Araceae plant. China J Chin Mater Med. 2008 ; 33 : 380-4. https://doi.org/10.3321/j.issn:1001-5302.2008.04.011
  68. Yu HL, Zhang Q, Wu H, Shao C, Zhao TF, Li Z. Comparative study on pro-inflammatory toxicity of Pinellia pedatiecta before and after being processed with alum. China J Chin Mater Med. 2013 ; 38 : 3893-7.
  69. Liu XQ, Wu H, Yu HL, Pan YZ. Irritability of Agglutinin from Pinellia ternata Breit,Pinellia pedtaisecta Schott and Typhonium giganteum Engl. Chin J Exp Tradit Med Form. 2011 ; 17 : 244-7.
  70. Yu HL, Zhu FG, Wu H. Study of toxic proteins on raphides from Pinellia ternata and Pinellia pedatisecta Schott. Chin J Tradit Chin Med Pharm. 2011 ; 26 : 1037-42.
  71. Liu XQ, Wu H, Yu HL, Zhao TF, Pan YZ, Shi RJ. Purification of a lectin from Arisaema erubescens (Wall.) Schott and its pro-inflammatory effects. Molecules. 2011 ; 16 : 9480-94. https://doi.org/10.3390/molecules16119480
  72. Pan YZ, Yu HL, Wu H, Chen YQ, Wang KL. Research on the relationship between raphides and lectin from Pinellia pedatisecta induce inflammatory and macrophage. Chin J Tradit Chin Med Pharm. 2014 ; 29 : 1397-401.
  73. Wu H, Zhong LY, Li W, Ye DJ. Study on processing mechanism of Pinellia ternate. China J Chin Mater Med. 2007 ; 32 : 1402-6.
  74. Liang J, Liu XM, Zhang ZL. The content of calcium oxalate crystal in different processed products of Pinellia ternata in comparison with the RP-HPLC method. Lishizhen Med Mater Med Res. 2015 ; 26 : 1121-3.
  75. Liang J, Liu XM, Zhang ZL, Shen SS, Wu RH. Study on processing of origin integration method and technology of Pinelliae Rhizoma Praeparatum cum Zingibere et Alumine. Chin Tradit Herb Drug. 2015 ; 46 : 1302-6.
  76. Olapade AA. Umeonuorah UC. Mineral, vitamin and antinutritional content of African breadfruit (Treculia africana) seeds processed with alum and trona. IOSR J Environ Sci Toxicol Food Technol. 2013 ; 5 : 71-8. https://doi.org/10.9790/2402-0557178
  77. Yu HL, Wang W, Wu H, Shen M, Zhang YB, Li SH. Effect of processing on toxic components lectin from four kinds of Araceae toxic medicines. Chin J Chin Mat Med. 2019 ; 44; 5398-404.
  78. Su T, Tan Y, Tsui MS, Yi H, Fu XQ, Li T, Chan CL, Guo H, Li YX, Zhu PL, Tse AKW, Cao H, Lu AP, Yu ZL. Metabolomics reveals the mechanisms for the cardiotoxicity of Pinelliae Rhizoma and the toxicity-reducing effect of processing. Sci Rep. 2016 ; 6 : 34692. https://doi.org/10.1038/srep34692
  79. Fueki T, Tanaka K, Obara K, Kawahara R, Namiki T, Makino T. The acrid raphides in tuberous root of Pinellia ternata have lipophilic character and are specifically denatured by ginger extract. J Nat Med. 2020 ; 74 : 722-31. https://doi.org/10.1007/s11418-020-01425-6
  80. Jin YP, Wu H, Yu HL, Pan YZ, Chen YQ, Wang KL, Zhang CC, Wang W. Antagonism mechanism of gingerols against inflammatory effect of toxic raphides from Pinella pedatisecta. China J Chin Mater Med. 2016 ; 41 : 1087-92.
  81. Yu HL, MAo SH, Zhao TF, Wu H, Pan YZ, Shu CY. Antagonistic effect of gingerols against TNF-α release, ROS overproduction and RIP3 expression increase induced by lectin from Pinellia ternata. China J Chin Mater Med. 2015 ; 40 : 3630-5.
  82. Shi R, Wu H, Yu H, Chen L. The research of ginger detoxification to Pinellia ternate-anti-inflammatory effect of ginger on inflammation induced by raphides in pinellia ternate. Pharmacol Clin Chin Mater Medica. 2010 ; 26 : 42-4.
  83. Wu X, Wang S, Lu J, Jing Y, Li M, Cao J, Bian B, Hu C. Seeing the unseen of Chinese herbal medicine processing (Paozhi): advances in new perspectives. Chin Med 2018 ; 13 : 4. https://doi.org/10.1186/s13020-018-0163-3
  84. Yu H, Pan Y, Wu H, Ge X, Zhang Q, Zhu F, Cai B. The alum-processing mechanism attenuating toxicity of Araceae Pinellia ternata and Pinellia pedatisecta. Arch Pharm Res. 2015 ; 38 : 1810-21. https://doi.org/10.1007/s12272-015-0556-0
  85. Xu XL, Shang Y, Jiang JG. Plant species forbidden in health food and their toxic constituents, toxicology and detoxification. Food Funct. 2016 ; 7 : 643. https://doi.org/10.1039/C5FO00995B
  86. Xiong Y, Wu H, Liu FY. Determination of alum residual amount in Rhizoma Pinelliae Preparata. Chin J Inform TCM. 2010 ; 17 : 36-7.
  87. Meng QL, Gu J, Zhang YM, Zhu M, He MR. Effects on the quality of rhizome pinelliae preparata with different processing methods. World J Integr Tradit West Med. 2018 ; 13 : 941-4.
  88. Ma S, Yang XM, Zhao RH. Speciation Analysis of aluminum in Rhizoma Pinelliae before and after alum processing. Chin J Spectroscopy Laboratory. 2011 ; 28 : 2983-6.
  89. Ma S, Yang XM, Xue YM, Zhou MY, Wang CM. Effects of simulative gastrointestinal system on transformations of aluminum species in alum processing Chinese medicines. Chin J Spectroscopy Lab. 2012 ; 29 : 3103-5.
  90. Wu Y, Zhou Z, Xiong Y, Wang Y, Sun J. Assay of aluminum content in alum and alum-pocessed medicinal herbs and its distribution in blood and brain in mice. China J Chin Mater Med. 1999 ; 24 : 84-6. https://doi.org/10.3321/j.issn:1001-5302.1999.02.008
  91. Li Y, Yu HL, Wang W, Mao SH, Wang KL, Wu H. HPLC fingerprints of pig,cattle and sheep biles. China J Chin Mater Med. 2018 ; 43 : 2580-5.
  92. Seo MJ, Lee YS, Lee JW, An HJ, Ryu HK, Kim HK, Hong SH. Comparative analysis of the physicochemical characteristics of bear, pig, and cow biles. Food Eng Prog. 2016 ; 20 : 349-56. https://doi.org/10.13050/foodengprog.2016.20.4.349
  93. Liu XF, Cui YC, Shan GS, Xu N, Gao H. Study on contents change of bile acids before and after fermentation of Arisaema cum Bile. Mod Chin Med. 2019 ; 21 : 375-9.
  94. Chen Y, Yu H, Wu H, Chen J, Wang W, Cheng Z, Shan X, Cai B. Study on identification of fermentation products and mixed steamed products of Arisaema Cum Bile. World Chin Med. 2019 ; 14 : 283-6.
  95. Zhao Q, Shan G, Xu D, Gao H, Shi J, Ju C, Lin G, Zhang F, Jia T. Simultaneous analysis of twelve bile acids by UPLC-MS and exploration of the processing mechanism of bile Arisaema by fermentation. J Anal Methods Chem. 2019 ; 2019 : 2980596.
  96. Saso L, Grippa E, Gatto MT, Silvestrini B. Original article inhibition of calcium oxalate precipitation by bile salts. Int J Urol. 2001 ; 8 : 124-7. https://doi.org/10.1046/j.1442-2042.2001.00264.x
  97. Gleeson D, Murphy GM, Dowling RH. Calcium binding by bile acids: in vitro studies using a calcium ion electrode. J Lipid Res. 1990 ; 31 : 781 -91. https://doi.org/10.1016/S0022-2275(20)42777-4
  98. Fantin G, Fogagnolo M, Delso I, Merino P. Exploratory spectroscopic and computational studies of the anion binding properties of methyl hyocholate in organic solvent. Tetrahedron. 2017 ; 73 : 1698-704. https://doi.org/10.1016/j.tet.2017.02.015
  99. Davis AP, Perry JJ, Warham RS. Anion recognition by alkyl cholates: Neutral anionophores closely related to a natural product. Tetrahedron Lett. 1998 ; 39 : 4569-72. https://doi.org/10.1016/S0040-4039(98)00808-9
  100. Skrtic D, Filipovic-Vincekovic N, Babic-Ivancic V, Tusek-Bozic Lj. Influence of sodium cholate on the crystallization of calcium oxalate. J Cryst Growth. 1993 ; 3-4 : 189-95.
  101. Moor EW, Celic L, Ostrow JD. Interactions between ionized calcium and sodium taurocholate: Bile salts are important buffers for prevention of calcium-containing gallstones. Gastroenterology. 1982 ; 83 : 1079-89. https://doi.org/10.1016/S0016-5085(82)80077-2
  102. Sonmez S, Darilmaz DO, Beyatli Y. Determination of the relationship between oxalate degradation and exopolysaccharide production by different Lactobacillus probiotic strains. Int J Dairy Technol. 2018 ; 71 : 741-52. https://doi.org/10.1111/1471-0307.12513
  103. Hatch M. Gut microbiota and oxalate homeostasis. Ann Transl Med. 2017 ; 5 : 36. https://doi.org/10.21037/atm.2016.12.70
  104. Sadaf H, Raza SI, Hassan SW. Role of gut microbiota against calcium oxalate. Microb Pathog. 2017 ; 109 : 287-91. https://doi.org/10.1016/j.micpath.2017.06.009
  105. Turroni S, Vitali B, Bendazzoli C, Candela M, Gotti R, Federici F, Pirovano F, Brigidi P. Oxalate consumption by lactobacilli: evaluation of oxalyl-CoA decarboxylase and formyl-CoA transferase activity in Lactobacillus acidophilus. J Appl Microbiol. 2007 ; 103 : 1600-9. https://doi.org/10.1111/j.1365-2672.2007.03388.x
  106. Federici F, Vitali B, Gotti R, Pasca MR, Gobbi S, Peck AB, Brigidi P. Characterization and heterologous expression of the oxalyl coenzyme A decarboxylase gene from Bifidobacterium lactis. Appl Environ Microbiol. 2004 ; 70 : 5066-73. https://doi.org/10.1128/AEM.70.9.5066-5073.2004
  107. Jonsson S, Ricagno S, Lindqvist Y, Richards NGJ. Kinetic and mechanistic characterization of the formyl-CoA transferase from Oxalobacter formigenes. J Biol Chem. 2004 ; 279 : 36003-12. https://doi.org/10.1074/jbc.M404873200
  108. Berthold CL, Moussatche P, Richards NGJ, Lindqvist Y. Structural basis for activation of the thiamin diphosphate-dependent enzyme oxalyl-CoA decarboxylase by adenosine diphosphate. J Biol Chem. 2005 ; 280 : 41645-54. https://doi.org/10.1074/jbc.M509921200
  109. Tang SY. Study on optimum fermentation conditions of fermented Dan nanxing(膽南星). A Masters Dissertation. Beijing University of Chinese Medicine. 2012.