

글_장성훈박사과정·장진곤박사·왕건욱교수 | 고려대학교 KU-KIST융합대학원

1. 서론

현대 사회는 AI 빅데이터 시대를 맞아, 국가 및 산업 전반에 걸쳐 전례 없는 빠른 속도로 변화, 진화하고 있다. 산업적 측면에서, 비구 조화된 복잡한 비정형 빅데이터 패턴을 빠르 게 분석 및 이해하여 산업 목적에 맞도록 가공 하는 일이 필요하다. 하지만, 기존 컴퓨터 체 계인 폰 노이만 구조에서는 순차적 처리 방식 에 최적화되었기 때문에, 패턴 분류시 필요한 수많은 병렬 행렬 곱 연산 수행이 어렵고, 이 를 수행할 때 에너지가 많이 요구된다는 문제 도 있다. 최근 인간 두뇌의 구조 및 작동 원리 에서 영감을 받은 뉴로모픽 전자공학은 복잡 한 비정형 데이터를 에너지 효율적으로 처리 할 수 있는 장점을 갖고 있어 많은 주목을 받 고 있다. 특히, 유기 물질을 기반으로 한 뉴로 모픽 컴퓨팅 시스템은 경량성, 유연성, 생체 적합성, 저비용 및 저온 가공성과 같은 이점으 로 인해 향후 인체 친화적 AI 유연소자시스템 관점에서 각광을 받고 있으며, 많은 연구가 이 루어 지고 있다.

본고에서는 뉴로모픽 시스템의 핵심 구동 단위인 유기 시냅스 소자를 소개하고, 소자 구 조 및 스위칭 원리별로 구분하여 발전 동향을 설명한다. 또한, 시냅스 소자의 주요 거동 특 성을 소개하고, 유기 시냅스 소자의 주요 특징 및 연구 방향을 소개한다. 마지막으로 유기물 질 기반의 뉴로모픽 시스템 구현을 위한 도전 과제들과 향후 전망을 제시하고자 한다.

2. 유기물 기반 인공 시냅스 소자 개요

2.1 시냅스 개요

그림1은 인간 뇌 신경을 구성하는 뉴런 (neuron)과 각 뉴런 사이를 연결하는 시냅스 (synapse)의 구조적 모식도를 나타낸다 [1]. 뉴 런은 해부학적으로 소마로 일컫는 세포체, 수 상돌기(dendrite), 그리고 축삭(axon)으로 구 성된다. 시냅스 전 뉴런에 빈번하게 자극을 주 면, 전기신호가 세포체 내에 집적되고, 그 신 호들의 합이 특정 임계 값보다 커지면 일정한 세기를 가지는 활동전위(action potential, 또 는 spike potential)가 발생하여 수상돌기로 전 달된다. 이후, 시냅스를 통해 연결된 시냅스 후 뉴런의 축삭으로 신호가 전달되어 나간다. 인간의 뇌는 약 10¹¹개의 뉴런으로 구성되어 있으며, 각각의 뉴런들은 시냅스를 통해 다른 1,000개 이상의 서로 다른 뉴런들과 병렬 연 결되어 있기 때문에, 효율적으로 대규모 병렬 신호처리가 가능하다. 특히, 각각의 시냅스는 해당 뉴런들 간의 연결강도(시냅스 가중치)를

Transmitter neuron Axon Dendrites Nucleus Nervous Nervous Nervous Cell body

그림1▶ 뉴런과 시냅스의 모식도.

결정하며, 자극의 정도에 따라 이 연결강도는 강화되거나 약화된다. 이를 시냅스 가소성이 라 하며, 학습, 기억, 추론 등의 지능형 인지활 동을 가능하게 한다.

2.2 유기물 시냅스 소자 동작원리

일반적으로 유기 인공 시냅스 소자는 크게 2단자 구조와 3단자 구조로 구분할 수 있다. 2 단자 구조의 시냅스 소자는 유기물 저항변화 절연체 층을 두 개의 금속 전극 사이에 적용한 구조를 가지며, 전체 소자의 전도도가 시냅스 가중치에 대응된다. 2단자 구조의 인공 시냅 스 소자는 크로스바 어레이 구조로 집적화하 기 용이하기 때문에 매우 높은 효율성을 확보 할 수 있다. 하지만, 시냅스 가중치의 업데이 트 과정과 읽기 및 행렬 곱 연산 과정에서 전 극을 공유하여 사용하기 때문에, 행렬 곱 연산 또는 읽기 동작 시 가중치의 값이 훼손되는 문 제가 발생할 수 있다. 또한, 누설전류가 발생 하여 읽기 및 행렬 곱 연산에서 오류가 발생할 수 있기 때문에, 어드레스 소자를 함께 통합 해야 한다는 문제가 있다. 이와 반대로, 3단자

그림 2 ▶ 유기 시냅스 소자의 동작원리.

구조에서는 소스/드레인 사이의 채널 전도도 가 시냅스 가중치에 대응되며, 집적화에 다소 불리하지만, 업데이트 과정에서의 간섭 효과 가 적고 누설 전류 문제에서 보다 자유롭다. 본 보고서에서는 구조별로 세 가지의 대표적 인 스위칭 동작 원리를 소개한다.

먼저, 그림 2(a)는 필라멘트 타입의 스위칭 메커니즘을 도식화하여 나타낸다. 필라멘트 타입 스위칭은 일반적으로 전기화학적 금속 화(electrochemical metalization, ECM) 구동 및 공공 변화(vacancy change, VC) 구동 스위 칭의 두 가지 범주로 분류할 수 있다. ECM 구 동 스위칭의 경우, Ag, Cu, Ti, Fe와 같은 활성 금속 전극에 전압을 가하면, 금속 양이온으로 산화하여 유기층으로 확산되고, 양극을 잇는 전도성 필라멘트가 형성된다. 전계에 따라 전 도성 필라멘트를 형성 또는 단절함으로써, 소 자의 전도도를 조절할 수 있고, 이를 이용하여 시냅스 가소성을 구현할 수 있다. VC 구동 스 위칭의 경우, 유기 절연체 층에서 이온 또는 이온 공공이 전계에 의하여 이동함에 따라, 이 로 이루어진 전도성 필라멘트가 형성 또는 단 절되며 시냅스 가소성을 구현할 수 있다. 그 림 2(b)는 공간 전하 제한 전도(space-chargelimited conduction, SCLC)를 기반으로 한 스 위칭 메커니즘에 대한 모식도이다. SCLC는 인 가된 전기장의 크기에 따라 (1) ohmic 영역, (2) trap-limited SCLC 영역, (3) trap-free SCLC 영역으로 구분된다. 먼저, ohmic 영역에서 낮 은 전압을 인가하면, J-V 특성은 옴의 법칙을 따른다. 저전압 영역에서 주입된 전하가 열 적으로 생성된 전하보다 적기 때문에, 인가된

전하들은 유전체 내에서 재분배되고, 공간전 하는 발생하지 않는다. 다음으로 trap-limited SCLC 영역에서, 특정 값 이상의 전계를 인가 하면, 공간전하가 형성되고 SCLC 가 이루어 진다. 이때 전류 밀도는 전압의 제곱에 비례 한다. 하지만 전하 이동은 trap에 의하여 제한 되며, 전계가 증가할수록 트랩이 점차 채워진 다. 마지막으로, trap-free 영역에서, 모든 전 하가 채워지며 전도도가 급격히 증가한다. 이 영역을 trap-free SCLC 영역이라 한다. 역전압 을 인가하면 트랩에서 전하가 탈출하여 전도 도가 감소하고, 이를 이용하여 시냅스 가소성 을 구현할 수 있다. 그림 2(c)는 전기장의 극 성에 의해 제어되는 유기 강유전성 터널링 접 합(ferroelectric tunneling junction, FTJ) 기반 의 시냅스 소자의 모식도이다. 외부 전기장이 인가되면, 얇은 강유전체 내부 도메인이 정렬 되어, 분극이 형성된다. 정렬된 분극은 정전하 차폐 효과를 야기하여, 강유전체와 전극 간의 전위 장벽에 영향을 준다. 이에 따라 터널 장 벽의 구조가 변화하여 터널링 전류가 변화한 다. 정렬된 강유전체 분극 방향은 보자력으로 인해 비휘발성 특성을 가진다. 보자력보다 역 방향의 큰 전계를 인가하여 분극 방향을 변경 하면, 터널링 장벽 구조가 다시 변화하여 저항 스위칭이 일어난다. 이를 이용하여, 다양한 시 냅스 특성 및 거동을 모사할 수 있다.

다음으로, 3단자 구조의 시냅스 소자의 대 표적인 동작원리 세 가지를 소개한다. 그림 2(d)는 강유전성 전계 효과 트랜지스터(field effect transistor, FET) 기반의 시냅스 장치의 모식도를 나타낸다. 유기 강유전층은 게이트

전극에 인가된 전계에 따라 분극이 정렬된다. 이 분극은 외부 전계가 제거된 후에도 고유한 보자력으로 인해 유지된다. 분극의 정렬방향 에 따라, 강유전층과 반도체 체널층 사이 계면 에 전하 운반자가 축적 또는 분산된다. 이에 따라, 시냅스 가중치에 해당하는 채널 전도도 를 조절할 수 있어, 시냅스 특성 구현이 가능 하다. 그림 2(e)는 게이트 전해질층의 산화-환 원 반응 기반 스위칭을 나타내는 모식도이다. 게이트 전압에 의해 유도된 전기 화학적 전위 변화는 고분자 채널의 산화-환원 반응을 야기 한다. 이에 따라, 채널 고분자에는 공간 전하 가 발생하고, 전해질 내 이온 또는 전하 운반 체가 이를 보상하기 위해 채널층로 이동하여, 도핑 효과를 야기한다. 즉, 게이트 전계로부 터 야기된 채널 도핑효과를 통하여, 채널의 전 도도를 증가 또는 감소시켜, 시냅스 가소성을 구현할 수 있다. 마지막으로, 그림 2(f)는 전하 트래핑(charge trapping) 기반의 스위칭 동작 을 나타낸다. 유기물 내 결함, 유기물과 전극 간 경계, 또는 플로팅 게이트에 전자나 정공이 트랩되어 공간전하를 형성한다. 이후, 게이트 전계를 차단해도, 트랩된 전하들은 탈출하지 못하기 때문에, 축전된 전하는 내부 전계를 형 성하고, 채널 전도도를 결정하게 된다. 이때, 게이트 전계에 따라 트랩되는 전하량을 조절 하면 채널 전도도를 아날로그 형태로 조절하 여 시냅스 특성을 모사할 수 있다.

2.3 유기물 시냅스 소자 특성 모사

시냅스 동작을 모사하기 위해, 일반적으로 상단 전극(2단자 구조) 또는 게이트 전극(3 단자 구조)에 스파이크 전위를 인가하며, 하 단 전극 또는 드레인 전극에 흐르는 전류값 을 시냅스 후 전류(post-synaptic current, PSC) 로 측정한다 (그림 3(a)). 시냅스 가소성은 크

그림 3 ▶ 유기 시냅스 소자의 시냅스 거동 특성.

게 (1) 단기 가소성 (STP)와 (2) 장기 가소성 (LTP)로 구분할 수 있다. STP는 시냅스 가중 치 변화가 짧은 시간 유지되고, 원래 상태로 빠르게 복구된다. STP는 일반적으로 뇌신경 망에서 동적 영역 및 계산 역할을 수행한다 고 알려져 있다. 이와 대조적으로 LTP는 시냅 스 가중치의 변화가 상대적으로 긴 시간 유지 된다. LTP는 우리 뇌의 기억과 학습에 중심적 인 역할을 하는 것으로 알려져 있다. 그림 3(b) 는 PVDF-TrFE 기반의 FeFET 타입 시냅스 소 자를 이용하여, 시냅스 가소성을 구현한 그래 프이다 [2]. 그림 3(b)에서 보는 바와 같이 짧 은 펄스 시간(100ms)을 지닌 시냅스 전 스파 이크를 인가하면, PSC는 증가하였다가 원래 상태로 돌아간다. 이에 반해, 보다 긴 펄스 시 간(500ms)의 시냅스 전 스파이크를 인가하 면, PSC가 증가하고 이전보다 높은 값을 유지 한다. 이는 각각 시냅스의 STP 및 LTP 동작과 유사하다. 또한, 시냅스는 자극의 빈도에 따 라 가중치가 변화하는 spike-rate-dependent plasticity (SRDP) 특성이 있다. 높은 빈도로 자 극을 인가하면, LTP가 발생하고, 낮은 빈도 로 자극을 인가할 때는 STP가 발생한다. 그림 3(c)에서 보는 바와 같이, 각각 다른 주기(0.5s, 1s, 10s)를 가지는 전압 펄스 트레인을 인가하 여 SRDP 특성을 구현하였다. 또한, 시냅스 가 소성은 스파이크의 수에 따라 다른 양상을 보 이며, 이를 spike-number-dependent plasticity (SNDP)라고 한다 [3]. 그림 3(d-e)는 생체고분 자 소재를 이용한 ECM 동작 기반의 시냅스 소자를 이용하여, SNDP를 구현한 그래프이 다. 스파이크 전위에 대응되는 전압 펄스를 10 개 인가하였을 때는 STP 특성을 보이지만 (그 림 3d), 30개를 인가하였을 때, 두꺼운 금속 필 라멘트가 형성되어 LTP 특성을 보인다 (그림 3(e)). 이는 동일 자극이 지속되면 단기 기억 이 장기 기억으로 변환되는 특성과 유사하다.

유기 인공 시냅스 소자의 주요 연구 방향

유기 인공 시냅스 소자는 무기 소재 기반의 시냅스 소자와는 구별되는 고유한 특징들을 갖고 있다. 예를 들어, 유기물 고유의 유연특 성, 생체적합성, 친환경적인 특성부터 액상 공 정 및 저온공정의 적합성, 낮은 제조비용과 공 정 수월성, 고분자 엔지니어링 통한 특성 가변 용이성 등이 있다. 여기에서, 유기 시냅스 소 자의 주요 특징을 이용한 세 가지의 주요 연구 동향 소개한다.

3.1 유연특성을 가진 시냅스 소자

기존 실리콘/산화물 기반의 전자소자와 달 리 유기 시냅스 소자는 고유한 유연성과 탄력 성으로 인해 가변형 전자 장치 또는 웨어러 블 지능형 전자장치로 적용될 수 있으며, 향 후 IOT, u-healthcare 플랫폼 등의 차세대 지 능형 산업 분야의 핵심 원천기술로 자리할 수 있다. 현재까지, 기계적 변형 조건에서 안정 적인 시냅스 거동 특성을 보이는 다양한 구조 의 유기 시냅스 소자가 보고되었다. 예를 들 어, 본 그룹에서는 기판이 없는 독립형 구조 의 PVDF-TrFE 기반의 FeFET 시냅스 소자를

그림 4 ▶ 유연특성의 유기 시냅스 소자 연구동향.

3.2 생체적합성 및 분해성 시냅스 소자

유기물은 기존 반도체/산화물에 대비하여 생체 적합성과 생분해성이 높기 때문에, 환 경 친화적이며 인체에 무해한 장점이 있다. 또한 저에너지 공법으로 제조가능하기 때문 에 최근 친환경 소자 플랫폼으로 주목을 받 고 있다. 이러한 배경에서, 생체 고분자를 활 용한 다양한 시냅스 소자 개발이 시도되었 다. 예를 들어, X. Yan et al. 은 계란에서 추출 한 albumen을 이용하여, ECM 스위칭 기반의 W/albumen/TiN/PET 구조의 시냅스 소자를 제작하였다(그림 5(a)) [6]. 또한, M. Kim et al. 은 해조류에서 추출한 l-carrageenan 기반의 시냅스 소자를 제작하고 시냅스 동작을 구현 하였다 [3]. Y. Park et al.는 lignin을 활용하여, Au/lignin/ITO/PET 구조의 시냅스 소자를 보 고하였다 [7]. lignin은 펄프 및 제지 산업의 폐 기물이기 때문에 풍부하고 저렴하며, 환경 친 화적인 장점이 있다. 또한, 그림 5(b)에서 보

제작하여, 다양한 기판(천, 젤리, 칫솔, 사탕) 에 안정적으로 전사가 가능함을 보고했다 (그림 4(a)) [2], 특히, 극단적인 굽힘 조건 내에 서도 안정적으로 시냅스 특성이 구현됨을 확 인하였다. 또한, 그림 4(b)에서 보는 바와 같 이 1차원 섬유 구조의 PVDF-TrFE FeFET 시냅 스 소자를 제작하고 안정적인 시냅스 동작 특 성을 보고했다 [4]. 특히, 이를 직조 어레이 구 조로 집적하여 향후, 웨어러블 소자 플랫폼으 로서의 새로운 가능성을 제시했다. 마지막으 로, 그림 4(c-e)에서 보는 바와 같이, C. Wu et al.은 pMSSQ:Cu⁺ 기반의 시냅스 소자를 제작 하고 3D array 집적화하여 굽힘조건에서 안정 적으로 시냅스 특성을 모사함을 보고했다 [5]. 위의 연구들에서 확인한 바와 같이, 기존 실리 콘/산화물 전자소자와 구분되는 차세대 웨어 러블 인공지능 전자기기 개발을 위한 유연 특 성을 가진 유기 시냅스 소자 개발 및 시냅스 거동 연구가 활발하게 이루어지고 있다.

그림 5 ▶ 생체적합성 및 분해성의 유기 시냅스 소자 연구동향.

는 바와 같이, R. Liu *et al*.은 키토산 기반의 생 체 고분자를 활용하여 시냅스 소자를 제작하 고, 실온에서 탈이온수에 용해되는 생분해성 을 확인했다 [8]. 이러한 특성은 최근 주목받는 생체 삽입형 전자소자 개발에 핵심 기술 플랫 폼으로 활용될 수 있는 가능성을 보인다.

3.3 광학 시냅스 소자

유기 광학 재료는 광 반응성과 감도가 우수 하여, 태양 전지, 발광 다이오드, 유기 유리 렌 즈 및 광통신을 비롯한 다양한 광학 응용 분 야에서 주목받았다. 최근, 이러한 광 반응성 을 이용한 광학 시냅스 소자 연구가 대두되고 있다. 최근 Zkyu LV *et al*.은 탄소 점 (Carbon dots, Cds)/실크 혼합물 기반의 광학 시냅스

그림 6 ▶ 유기 광학 시냅스 소자 연구동향.

No.

소자를 보고했다(그림 6(a)) [9]. 단일 광학 신 호 펄스를 인가함에 따라 PSC가 단계적으로 증가하는 LTP 거동을 모사했다(그림 6(b)). 또한, 그림 6(c)에서 보는 바와 같이 서로 다 른 파장대의 광학 신호(655 nm, 450 nm, 365 nm)에 따라 각기 다른 LTP 거동 특성을 보 임을 확인했다. 이것은 시신경 모사 뉴로모 픽 플랫폼으로서의 가능성을 시사한다(그림 6(d)). 또한, 본 그룹에서는 Oranolead halide Perovskite (OHP) 기반의 VC 스위칭 타입의 광학 시냅스 소자를 보고했다 [10]. 광학 신호 를 사용하여, 아이오딘 공공의 이동에 대한 활 성화 에너지를 감소시켜 필라멘트 형성을 촉 진하였다. 이를 통해, 그림 6(e)에 보는 바와 같이, 일반적인 LTP 거동에 추가적인 자유도 가 증가하였고, 이를 이용하여 더 적은 에너지 를 소모하며 패턴 인식 학습을 가속화 시킬 수 있음을 증명하였다(그림 6(f)). 이러한 광학 시냅스 소자 기술 연구는 향후 시각 신경계 구 현 및 로봇공학, 자율주행 등의 다양한 분야에 적용될 수 있다.

4. 맺음말

인간 뇌 신경망을 모사하는 뉴로모픽 컴퓨 팅 시스템은 급증하는 비정형 데이터를 효과 적으로 처리 및 분류할 수 있는 차세대 플랫폼 으로 활발히 연구되고 있다. 특히, 최근 유기물 기반의 시냅스 소자는 기존 실리콘/산화물 재 료 기반 소자와는 차별되는 신축성 및 유연

특징과 친환경성, 생체적합성, 저온/액상 공 정 가능성, 낮은 비용 등의 장점을 갖고 있어, IOT 시스템, 웨어러블 지능형 소자 플랫폼, 차 세대 u-healthcare 등의 차세대 응용 분야의 핵심 기술로 주목받고 있다. 하지만 아직 유 기물 기반 뉴로모픽 시스템을 구현 및 확장하 기 위해 해결되어야할 과제들이 남아있다. 첫 째로, 유기전자소자는 포토리소그래피 공정 을 포함한 기존 CMOS 공정과의 호환성이 낮 으며, 미세구조 구현 및 집적화의 어려움이 있 다. 따라서 유기물 기반의 통합된 뉴로모픽 시 스템 구현을 위해서는 높은 재현성과 낮은 성 능 편차를 갖는 대면적 어레이 집적화를 위한 차세대 공정 기술 개발이 선제되어야 한다. 이 를 위해서는, 나노 3D 프린팅, 대면적 전사 기 술 개발 등의 공정 기법에 대한 융합연구가 지 속적으로 이루어져야 한다. 두 번째 과제는 수 분, 산소, 열 등의 외부 환경 노출에 따른 성능 열화 및 내구성 저하 문제이다. 유기 시냅스 소자 기반의 뉴로모픽 시스템을 지능형 인간-기계 인터페이스 및 IOT 플랫폼으로 활용하 기 위해서는, 내구성 및 안정성 보강이 요구되 며, 이를 위해 공기 차단 패키징 기술, 또는 초 소수성 표면 변조 기술이 요구된다. 뿐만 아니 라, 에너지 효율적인 뉴로모픽 시스템 구현을 위해서는 소자 구동 속도 및 구동 전압 개선이 이루어져야 한다. 마지막으로, 보다 확장적이 고 실용적인 시스템 구현을 위해서는 CMOS 회로와의 접합 성능 개선이 이루어져야 하며, 이를 위해서 저온에서의 back end 공정 기술 의 개발과 유/무기 접합 특성 최적화 연구가 요구된다. 이러한 과제들을 해결하여 새로운

참/고/문/헌

- [1] B. Hasfsi et al., World Journal of Nano Science and Engineering, 4, 134 (2014).
- [2] S. Jang et al., ACS Appl. Mater. Interfaces, 11, 1071 (2019).
- [3] M. Kim et al., ACS Nano, 12, 1680 (2018).
- [4] S. Ham et al., Sci. Adv., 6:eaba1178 (2020).
- [5] C. Wu et al., Nature communications, 8, 1 (2017).

저/자/약/력

- [6] X. Yan et al., ACS Appl. Mater. Interfaces, 11, 18654 (2019).
- [7] Y. Park et al., ACS Nano, 11, 8962 (2017).
- [8] R. Liu et al., J. Mater. Chem. C, 4, 7744 (2016).
- [9] Z. Lv et al., Adv. Func. Mater., 29, 1902374 (2019).
- [10] S. Ham et al., Adv. Func. Mater, 29, 1806646 (2019).

성명	장성훈	
학력 경력	2016년 2018년 2019년 ~ 현재 2018년 ~ 2019년	고려대학교 물리학과 이학사 고려대학교 KU-KIST 융합대학원 공학석사 고려대학교 KU-KIST 융합대학원 박사과정 한국과학기술연구원 인턴연구원
성명	장진곤	
학력	2011년 2017년	연세대학교 물리학과 이학사 서울대학교 응용물리과 이학박사
경력	2018년 ~ 2019년 2019년 ~ 현재	한국과학기술연구원 박사 후 연구원 고려대학교 KU-KIST 융합대학원 연구교수
성명	왕건욱	
학력	2005년 2007년 2012년	성균관대학교 물리학과 이학사 광주과학기술원 신소재공학과 공학석사 광주과학기술원 신소재공학과 공학박사
경력	2012년 ~ 2015년 2015년 ~ 현재 2020년 ~ 현재	RICE대학교 화학과 박사 후 연구원 고려대학교 KU-KIST 융합대학원 부교수 고려대학교 융합에너지공학과 부교수

Special Theme