DOI QR코드

DOI QR Code

SASAKIAN 3-MANIFOLDS ADMITTING A GRADIENT RICCI-YAMABE SOLITON

  • Dey, Dibakar (Department of Pure Mathematics, University of Calcutta)
  • 투고 : 2020.12.15
  • 심사 : 2021.08.25
  • 발행 : 2021.09.30

초록

The object of the present paper is to characterize Sasakian 3-manifolds admitting a gradient Ricci-Yamabe soliton. It is shown that a Sasakian 3-manifold M with constant scalar curvature admitting a proper gradient Ricci-Yamabe soliton is Einstein and locally isometric to a unit sphere. Also, the potential vector field is an infinitesimal automorphism of the contact metric structure. In addition, if M is complete, then it is compact.

키워드

참고문헌

  1. Y. Akrami, T. S. Koivisto and A. R. Solomon, The nature of spacetime in bigravity: two metrics or none?, Gen. Relativ. and Grav. 47 (2015), 1838. https://doi.org/10.1007/s10714-014-1838-4
  2. C. P. Boyer and K. Galicki, On Sasakian Einstein geometry, Int. J. Math. 11 (2000), 873-909. https://doi.org/10.1142/S0129167X00000477
  3. C. P . Boyer, K. Galicki and P. Matzeu, On η-Einstein Sasakian geometry, Comm. Math. Phys. 262 (2006), 177-208. https://doi.org/10.1007/s00220-005-1459-6
  4. W. Boskoff and M. Crasmareanu, A Rosen type bi-metric universe and its physical properties, Int. J. Geom. Methods Mod. Phys. 15 (2018), 1850174. https://doi.org/10.1142/S0219887818501748
  5. P. Candelas, G. T. Horowitz, A. Strominger and E. Witten, Vacuum configuration for superstrings, Nuclear Phys. B 258 (1995), 46-74. https://doi.org/10.1016/0550-3213(85)90602-9
  6. G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal. 132 (2016), 66-94. https://doi.org/10.1016/j.na.2015.10.021
  7. G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza and L. Mazzieri, The Ricci-Bourguignon flow, Pacific J. Math. 28 (2017), 337-370. https://doi.org/10.2140/pjm.1969.28.337
  8. D. Dey, Almost Kenmotsu metric as Ricci-Yamabe soliton, arXiv:2005.02322v1 [math.DG]
  9. A. Ghosh and R. Sharma, Sasakian metric as a Ricci soliton and related results, J. Geom. Phys. 75 (2014), 1-6. https://doi.org/10.1016/j.geomphys.2013.08.016
  10. S. Guler and M. Crasmareanu, Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy, Turk. J. Math. 43 (2019), 2361-2641.
  11. R. S. Hamilton, Three manifold with positive Ricci curvature, J. Differential Geom. 17 (1982), 255-306. https://doi.org/10.4310/jdg/1214436922
  12. R. S. Hamilton, Ricci flow on surfaces, Contempory Mathematics 71 (1988), 237-261. https://doi.org/10.1090/conm/071/954419
  13. R. S. Hamilton, Lectures on geometric flows, 1989 (unpublished).
  14. J. B. Jun and U. K. Kim, On 3-dimensional almost contact metric manifolds, Kyungpook Math. J. 34 (1994), 293-301.
  15. P. Majhi, U. C. De and D. Kar, η-Ricci solitons on Sasakian 3-manifolds, An. Univ. Vest Timis. Ser. Mat.-Inform. LV, 2 (2017), 143-156.
  16. J. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theoret. Phys. 38 (1999), 1113-1133. https://doi.org/10.1023/A:1026654312961
  17. S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941), 401-404. https://doi.org/10.1215/S0012-7094-41-00832-3
  18. R. Sharma, Certain results on K-contact and (k, μ)-contact manifolds, J. Geom. 89 (2008), 138-147. https://doi.org/10.1007/s00022-008-2004-5
  19. R. Sharma, A 3-dimensional Sasakian metric as a Yamabe soliton, Int. J. Geom. Methods Mod. Phys. 09 (2012), 1220003. https://doi.org/10.1142/S0219887812200034
  20. S. Sasaki, Lecture notes on almost contact manifolds-I, Mathematical Institute, Tohoku Univ.(1965)
  21. M. D. Siddiqi and M. A. Akyol, η-Ricci-Yamabe solitons on Riemannian submersions from Riemannian manifolds, arXiv.2004.14124v1 [math.DG]
  22. S. Tanno, Note on infinitesimal transformations over contact manifolds, Tohoku Math. J. 14 (1962), 416-430. https://doi.org/10.2748/tmj/1178244078
  23. V. Venkatesha and D. M. Naik, Yamabe solitons on 3-dimensional contact metric manifolds with Qϕ = ϕQ, Int. J. Geom. Methods Mod. Phys. 16 (2019), 1950039. https://doi.org/10.1142/S0219887819500397
  24. K. Yano, Integral formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.