DOI QR코드

DOI QR Code

Development of Eco-friendly Combustion Process for Waste 2,4,6-trinitrotoluene

폐 2,4,6-trinitrotoluene의 환경 친화적 연소처리공정 개발

  • Kim, Tae Ho (Department of Converging Science and Technology, Dong-A University) ;
  • An, Il Ho (Department of Engineering Section, Poongsan Angang Plant) ;
  • Kim, Jong Min (Department of Chemical Engineering, Dong-A University)
  • 김태호 (동아대학교 융합과학기술학과) ;
  • 안일호 (풍산 안강사업장 공무팀) ;
  • 김종민 (동아대학교 화학공학과)
  • Received : 2021.07.12
  • Accepted : 2021.08.24
  • Published : 2021.09.30

Abstract

In this study, an eco-friendly combustion process of waste 2,4,6-trinitrotoluene (TNT: 2,4,6-trinitrotoluene) was developed, and fundamental data for the quantity of the organic matter in the final combustion residues is presented. Because complete combustion of TNT is not possible theoretically, the combustion process was optimized to reduce organic matter content in the combustion residue by performing measures such as heating time changes, addition of propellant material, and after treatment using a high-temp electrical furnace. From the results, it was confirmed that the organic matter content in the residue could be decreased to 7 ~ 10% with each method. The quantity of the organic matter could be minimized by optimizing the combustion conditions of the process. With only a combustion time increase, the amount of organic matter in the combustion residues was measured at about 9 wt%. The environmental friendliness of the final exhaust gas was also confirmed by real time gas component analyses. In addition, the organic contents could be reduced by a further 2 wt% by applying an additional heat treatment using an external electric furnace after the first incineration treatment. In the combustion process of propellant added waste TNT, it was found that various TNT wastes could be treated using the same eco-friendly protocols because the organic content in the residue decreased in accordance with the amount of propellant. The amount of the organic matter content produced by all these methods fulfilled the requirements under the Waste Management Act.

본 연구에서는 폐 2,4,6-트리나이트로톨루엔(2, 4, 6-trinitrotoluene, TNT)의 친환경 연소처리 공정을 개발하고, 이를 이용한 연소조건 최적화를 통한 연소 잔유물 중 유기물 최소화에 대한 기초연구의 데이터를 제시하였다. TNT는 자체적으로 완전연소가 어려운 물질로 외부에서 열을 가해주는 조건인 버너의 가열시간 변화, 추진제(가연물)와 혼합하여 소각, 연소 후 잔유물에 대한 2차 고온처리의 방법으로 실시하였다. 실험결과 잔유물 내 유기물 함량 감소를 확인하였으며, 각 방법별 최소 7 ~ 10%의 유기물 함량을 나타내었다. 최적의 연소시간 조건에서 폐TNT의 연소 잔유물 중 유기물 함량은 1차 소각로만 사용한 경우 9% 수준을 보였으며, 동시에 폐가스의 환경친화성도 폐가스 실시간 분석에서 확인 되었다. 1차 소각이후 소각 잔유물을 외부의 전기로를 이용하여 추가적으로 고온처리 처리할 경우 유기물 함량을 2% 정도 추가적으로 감소시킬 수 있었다. 추진제가 포함된 연소공정에서는 추진제 함량에 따른 잔유물 중 유기물의 함량 감소가 가능함이 나타나 다양한 TNT 폐기물을 처리할 수 있음을 알 수 있었다. 폐기물관리법에서 소각 후 잔유물 내 유기물 함량 15% 미만을 충족하는 수치이다.

Keywords

Acknowledgement

본 연구는 풍산 안강사업장에서 지원한 사내연구비로 진행되었기에 감사드립니다.

References

  1. Song, S. I., "Chemical Weapon Disposal and Trend of Disposal Technology," Def. Technol., 417, 114-123 (2013).
  2. Park, J. H., Shin, W. M., and Lee, J. W., "Review on TNT Disposal," Journal of the KIMST., 19(1), 127-143 (2016).
  3. Hwang, R., Kim, H., Oh, M., and Moon, I., "Simulation and Process Optimization of High Energetic Materials Demilitarization Facility Gas Treatment Process," J. KIMS Technol., 24(1), 79-83 (2021). https://doi.org/10.9766/KIMST.2021.24.1.079
  4. Lee, H., Choi, J. H., Lee, C. H., and Kim, J. Y., "Determination of Optimum Operating Parameters for Enhanced Alkaline Hydrolysis Contaminated with TNT," J. Soil Groundw. Environ., 20(6), 104 (2015). https://doi.org/10.7857/JSGE.2015.20.4.104
  5. Williams, R. T., Ziegenfuss, P. S., and Sisk, W. E., "Composting of Explosives and Propellant Contaminated Soils Under Thermophilic and Mesophilic Conditions," J. Ind. Microbiol., 9(2), 137-144 (1992). https://doi.org/10.1007/BF01569746
  6. Nurofik, N., Choi, J., Oh, S., and Shin, W. S., "Toxicity and Uptake of 2,4,6-trinitrotoluene (TNT) in Contaminated Soils to Eisenia Fetida," J. Soil Groundw. Environ., 20(6), 46-54 (2015). https://doi.org/10.7857/JSGE.2015.20.6.046
  7. Serrao-Gonzalez, M. Y., Chandra, R., Castillo-Zacarias, C., Robledo-Padilla, F., Rostro-Alanis, M. D. J., and Parra-Saldivar, R., "Biotransformation and Degradation of 2,4,6-trinitrotoluene by Microbial Metabolism and Their Interactionm," Def. Technol., 14(2), 151-164 (2018). https://doi.org/10.1016/j.dt.2018.01.004
  8. Oh, D., Kim, S., Lee, K., Ahn, I., and Lee, C. H., "Separation of Waste TNT and RDX Mixture Using SMB Process," Clean Technol., 23(2), 163-171 (2017). https://doi.org/10.7464/ksct.2017.23.2.163
  9. Park, J. H., Shin, W. M., and Lee, J. W., "Review on TNT Disposal," J. KIMS Technol., 19(1), 127-143 (2016).
  10. https://www.epa.gov/sites/production/files/2015-02/documents/2_10_2_2.pdf (accessed Jul. 2021).
  11. United States Environmental Protection Agency, "Technical Fact Sheet- 2,4,6-Trinitrotoluene (TNT)," (2014).
  12. http://www.chm.bris.ac.uk/webprojects2001/moorcraft/TNT.htm (accessed Aug. 2021).
  13. Lee, S. H., Baek, S. W., Moon, I., Park, J. S., Kim, H. S., and Oh, M., "Incineration for Demilitarization of Waste Cyclotol," J. KIMS Technol., 19(4), 545-550 (2016).
  14. Lee, S. H., Baek, S. W., Moon, I., Park, J. S., and Oh, M., "Incineration Process of Double Base Propellant for Demilitarizatio," Clean Technol., 22(3), 190-195 (2016). https://doi.org/10.7464/ksct.2016.22.3.190
  15. Park. J. S., "A Study on the Detonation Behavior of Insensitive Explosive by Experiments and Computational Simulations," Ph.D. Dissertation, KAIST, Daejeon (2011).
  16. Kim, H. S., "Basic Technologies for the Development of High Explosives," Korea Chem. Eng. Res., 44(5), 435-443 (2006).
  17. Kang, C. W., "Explosives and Industrial Applications," Goomibook, Seoul, 2, 14 (2004).
  18. Kang, C. W., "Explosives and Industrial Applications," Goomibook, Seoul, 2, 39-40 (2004).
  19. Kang, C. W., "Explosives and Industrial Applications," Goomibook, Seoul, 2, 43 (2004)
  20. Kim, M., and Kwon, S., "Calculation of the TNT Equivalent Mass of the Possible Explosion of CO, CH4, and C2H4," Korean Society of Explosives and Blast Engineering., 38(1), 1-13 (2020).
  21. Cohen, R., Zeiri, Y., Wurzberg, E., and Kosloff, R., "Mechanism of Thermal Unimolecular Decomposition of TNT (2,4,6-Trinitrotoluene): A DFT Study," J. Phys. Chem. A, 111(43), 11074-11083 (2007). https://doi.org/10.1021/jp072121s
  22. Ahmad, M. F., Hussain, A., and Malik, A. Q., "Thermal Decomposition and Kinetic Evaluation of Decanted 2,4,6-trinitrotoluene (TNT) for Reutilization as Composite Material," Mater. Sci. Eng., 146, 1 (2016). https://doi.org/10.1016/0921-5093(91)90264-N
  23. Kwon, S. K., and Park, J. C., "A Review of TNT Equivalent Method for Evaluating Explosion Energy due to Gas Explosion," Journal of Korean Society of Explosives & Blasting Engineering, 33(3), 1-13 (2015).
  24. Thttp://www.chm.bris.ac.uk/webprojects2001/moorcraft/TNT.htm (accessed Aug. 2021).
  25. Ministry of Enviroment (Korea), "Waste Management Act," (2020).
  26. Kwon, D. W., and Hong, S. C., "Selective Catalytic Reduction (SCR) Technology Trends for the Nitrogen Oxide Removal of Exhaust Gas," Prospect. Ind. Chem., 19(5), (2016).
  27. National Institute of Environmental Research (Korea), Waste Process Test Standards ES 06301.1C, 1-2 (2017).
  28. National Institute of Environmental Research (Korea), Waste Process Test Standards ES 06301.1C, 3-4 (2017).
  29. Acree Jr., W. E., "Thermodynamic Properties of Organic Compounds: Part 4. First Update of Enthalpy of Fusion and Melting Point Temperature Compilation," Thermochim. Acta., 219(27), 97-104 (1993). https://doi.org/10.1016/0040-6031(93)80486-T