DOI QR코드

DOI QR Code

Pathophysiology of Temporomandibular Joint Arthritis: Review

  • Ju, Hye-Min (Department of Oral Medicine, Pusan National University Dental Hospital, Dental Research Institute) ;
  • Kim, Kyung-Hee (Department of Oral Medicine, Inje University Busan Paik Hospital) ;
  • Jeong, Sung-Hee (Department of Oral Medicine, Pusan National University, School of Dentistry, Dental Research Institute, Dental and Life Science Institute) ;
  • Ahn, Yong-Woo (Department of Oral Medicine, Pusan National University, School of Dentistry, Dental Research Institute, Dental and Life Science Institute) ;
  • Ok, Soo-Min (Department of Oral Medicine, Pusan National University, School of Dentistry, Dental Research Institute, Dental and Life Science Institute)
  • Received : 2021.09.02
  • Accepted : 2021.09.17
  • Published : 2021.09.30

Abstract

As for temporomandibular joint arthritis (TMJ OA), managing the contributing factors at an early stage through accurate diagnosis is necessary to prevent irreversible bone changes. TMJ OA, which is a multi-organ disease caused by various pathophysiological mechanisms, is developed mainly due to mechanical overload. It is a disease characterized by degeneration of articular cartilage and subchondral bone as a low-level inflammatory arthritis condition developed by dysregulation of catabolic and anabolic activity of chondrocytes. Age, mechanical overload sensing of cartilage, chondrocyte apoptosis, catabolic enzymes, inflammatory factors, abnormal remodeling of subchondral bone, and estrogens may be involved in the pathogenesis of arthritis. Therefore, a comprehensive evaluation is needed to diagnose and manage progressive cartilage degeneration, subchondral bone remodeling, and associated symptoms of TMJ OA.

Keywords

Acknowledgement

This work was supported by a 2-year Research Grant of Pusan National University.

References

  1. Yadav S, Yang Y, Dutra EH, Robinson JL, Wadhwa S. Temporomandibular joint disorders in older adults. J Am Geriatr Soc 2018;66:1213-1217. https://doi.org/10.1111/jgs.15354
  2. Schiffman E, Ohrbach R, Truelove E, et al.; International RDC/TMD Consortium Network, International association for Dental Research; Orofacial Pain Special Interest Group; International Association for the Study of Pain. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: recommendations of the International RDC/TMD Consortium Network and Orofacial Pain Special Interest Group. J Oral Facial Pain Headache 2014;28:6-27. https://doi.org/10.11607/jop.1151
  3. Chen D, Shen J, Zhao W, et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res 2017;5:16044. https://doi.org/10.1038/boneres.2016.44
  4. Kalladka M, Quek S, Heir G, Eliav E, Mupparapu M, Viswanath A. Temporomandibular joint osteoarthritis: diagnosis and long-term conservative management: a topic review. J Indian Prosthodont Soc 2014;14:6-15. https://doi.org/10.1007/s13191-013-0321-3
  5. Wang Y, Wei L, Zeng L, He D, Wei X. Nutrition and degeneration of articular cartilage. Knee Surg Sports Traumatol Arthrosc 2013;21:1751-1762. https://doi.org/10.1007/s00167-012-1977-7
  6. Lv X, Li Q, Wu S, Sun J, Zhang M, Chen YJ. Psychological stress alters the ultrastructure and increases IL-1β and TNF-α in mandibular condylar cartilage. Braz J Med Biol Res 2012;45:968-976. https://doi.org/10.1590/S0100-879X2012007500102
  7. Hinton RJ, Carlson DS. Histological changes in the articular eminence and mandibular fossa during growth of the rhesus monkey (Macaca mulatta). Am J Anat 1983;166:99-116. https://doi.org/10.1002/aja.1001660108
  8. Kuroda S, Tanimoto K, Izawa T, Fujihara S, Koolstra JH, Tanaka E. Biomechanical and biochemical characteristics of the mandibular condylar cartilage. Osteoarthritis Cartilage 2009;17:1408-1415. https://doi.org/10.1016/j.joca.2009.04.025
  9. Rath B, Nam J, Knobloch TJ, Lannutti JJ, Agarwal S. Compressive forces induce osteogenic gene expression in calvarial osteoblasts. J Biomech 2008;41:1095-1103. https://doi.org/10.1016/j.jbiomech.2007.11.024
  10. Man GS, Mologhianu G. Osteoarthritis pathogenesis - a complex process that involves the entire joint. J Med Life 2014;7:37-41.
  11. Nakano T, Scott PG. Changes in the chemical composition of the bovine temporomandibular joint disc with age. Arch Oral Biol 1996;41:845-853. https://doi.org/10.1016/S0003-9969(96)00040-4
  12. Crockett AB, Wiersma GB, Tai H, Mitchell W. Pesticide and mercury residues in commercially grown catfish. Pestic Monit J 1975;8:235-240.
  13. Nordberg RC, Mellor LF, Krause AR, Donahue HJ, Loboa EG. LRP receptors in chondrocytes are modulated by simulated microgravity and cyclic hydrostatic pressure. PLoS One 2019;14:e0223245. https://doi.org/10.1371/journal.pone.0223245
  14. Lee YH, Park HK, Auh QS, et al. Emerging potential of exosomes in regenerative medicine for temporomandibular joint osteoarthritis. Int J Mol Sci 2020;21:1541. https://doi.org/10.3390/ijms21041541
  15. Zhou J, Chen Q, Lanske B, et al. Disrupting the Indian hedgehog signaling pathway in vivo attenuates surgically induced osteoarthritis progression in Col2a1-CreERT2; Ihhfl/fl mice. Arthritis Res Ther 2014;16:R11. https://doi.org/10.1186/ar4437
  16. Aigner T, Zhu Y, Chansky HH, Matsen FA 3rd, Maloney WJ, Sandell LJ. Reexpression of type IIA procollagen by adult articular chondrocytes in osteoarthritic cartilage. Arthritis Rheum 1999;42:1443-1450. https://doi.org/10.1002/1529-0131(199907)42:7<1443::AID-ANR18>3.0.CO;2-A
  17. Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol 2007;213:626-634. https://doi.org/10.1002/jcp.21258
  18. Lohmander LS, Ionescu M, Jugessur H, Poole AR. Changes in joint cartilage aggrecan after knee injury and in osteoarthritis. Arthritis Rheum 1999;42:534-544. https://doi.org/10.1002/1529-0131(199904)42:3<534::AID-ANR19>3.0.CO;2-J
  19. Yang H, Wen Y, Zhang M, et al. MTORC1 coordinates the autophagy and apoptosis signaling in articular chondrocytes in osteoarthritic temporomandibular joint. Autophagy 2020;16:271-288. https://doi.org/10.1080/15548627.2019.1606647
  20. Chang J, Wang W, Zhang H, Hu Y, Wang M, Yin Z. The dual role of autophagy in chondrocyte responses in the pathogenesis of articular cartilage degeneration in osteoarthritis. Int J Mol Med 2013;32:1311-1318. https://doi.org/10.3892/ijmm.2013.1520
  21. Yamashita-Futani Y, Jokaji R, Ooi K, et al. Metalloelastase-12 is involved in the temporomandibular joint inflammatory response as well as cartilage degradation by aggrecanases in STR/Ort mice. Biomed Rep 2021;14:51. https://doi.org/10.3892/br.2021.1427
  22. Wong M, Siegrist M, Goodwin K. Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone 2003;33:685-693. https://doi.org/10.1016/S8756-3282(03)00242-4
  23. Zwiri A, Al-Hatamleh MAI, W Ahmad WMA, et al. Biomarkers for temporomandibular disorders: current status and future directions. Diagnostics (Basel) 2020;10:303. https://doi.org/10.3390/diagnostics10050303
  24. Matsumoto K, Honda K, Ohshima M, et al. Cytokine profile in synovial fluid from patients with internal derangement of the temporomandibular joint: a preliminary study. Dentomaxillofac Radiol 2006;35:432-441. https://doi.org/10.1259/dmfr/77288976
  25. Zhou X, Cao H, Yuan Y, Wu W. Biochemical signals mediate the crosstalk between cartilage and bone in osteoarthritis. Biomed Res Int 2020;2020:5720360.
  26. Chien SY, Tsai CH, Liu SC, et al. Noggin inhibits IL-1β and BMP-2 expression, and attenuates cartilage degeneration and subchondral bone destruction in experimental osteoarthritis. Cells 2020;9:927. https://doi.org/10.3390/cells9040927
  27. Wang XD, Zhang JN, Gan YH, Zhou YH. Current understanding of pathogenesis and treatment of TMJ osteoarthritis. J Dent Res 2015;94:666-673. https://doi.org/10.1177/0022034515574770
  28. Gunson MJ, Arnett GW, Formby B, Falzone C, Mathur R, Alexander C. Oral contraceptive pill use and abnormal menstrual cycles in women with severe condylar resorption: a case for low serum 17beta-estradiol as a major factor in progressive condylar resorption. Am J Orthod Dentofacial Orthop 2009;136:772-779. https://doi.org/10.1016/j.ajodo.2009.07.011
  29. Wang XD, Kou XX, Meng Z, et al. Estrogen aggravates iodoacetate-induced temporomandibular joint osteoarthritis. J Dent Res 2013;92:918-924. https://doi.org/10.1177/0022034513501323
  30. Kawai N, Tanaka E, Langenbach GE, et al. Jaw-muscle activity changes after the induction of osteoarthrosis in the temporomandibular joint by mechanical loading. J Orofac Pain 2008;22:153-162.
  31. Brandt KD, Heilman DK, Slemenda C, et al. Quadriceps strength in women with radiographically progressive osteoarthritis of the knee and those with stable radiographic changes. J Rheumatol 1999;26:2431-2437.
  32. Cornish J, Callon KE, Bava U, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 2002;175:405-415. https://doi.org/10.1677/joe.0.1750405
  33. Ehling A, Schaffler A, Herfarth H, et al. The potential of adiponectin in driving arthritis. J Immunol 2006;176:4468-4478. https://doi.org/10.4049/jimmunol.176.7.4468
  34. Lippiello L, Walsh T, Fienhold M. The association of lipid abnormalities with tissue pathology in human osteoarthritic articular cartilage. Metabolism 1991;40:571-576. https://doi.org/10.1016/0026-0495(91)90046-Y
  35. Du J, Jiang Q, Mei L, et al. Effect of high fat diet and excessive compressive mechanical force on pathologic changes of temporomandibular joint. Sci Rep 2020;10:17457. https://doi.org/10.1038/s41598-020-74326-z
  36. Ducy P, Amling M, Takeda S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000;100:197-207. https://doi.org/10.1016/S0092-8674(00)81558-5
  37. Bjurholm A. Neuroendocrine peptides in bone. Int Orthop 1991;15:325-329. https://doi.org/10.1007/BF00186871
  38. Rosen CJ. Bone remodeling, energy metabolism, and the molecular clock. Cell Metab 2008;7:7-10. https://doi.org/10.1016/j.cmet.2007.12.004
  39. Suri S, Gill SE, Massena de Camin S, Wilson D, McWilliams DF, Walsh DA. Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann Rheum Dis 2007;66:1423-1428. https://doi.org/10.1136/ard.2006.063354
  40. Findlay DM. Vascular pathology and osteoarthritis. Rheumatology (Oxford) 2007;46:1763-1768. https://doi.org/10.1093/rheumatology/kem191
  41. Sharma AR, Jagga S, Lee SS, Nam JS. Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. Int J Mol Sci 2013;14:19805-19830. https://doi.org/10.3390/ijms141019805
  42. Wang X, Yu Y, Huang Y, et al. Identification of potential diagnostic gene biomarkers in patients with osteoarthritis. Sci Rep 2020;10:13591. https://doi.org/10.1038/s41598-020-70596-9
  43. Ok SM, Lee SM, Park HR, Jeong SH, Ko CC, Kim YI. Concentrations of CTX I, CTX II, DPD, and PYD in the urine as a biomarker for the diagnosis of temporomandibular joint osteoarthritis: a preliminary study. Cranio 2018;36:366-372.
  44. Bianchi J, de Oliveira Ruellas AC, Goncalves JR, et al. Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning. Sci Rep 2020;10:8012. https://doi.org/10.1038/s41598-020-64942-0