DOI QR코드

DOI QR Code

Characterization of Virulence Function of Pseudomonas cichorii Avirulence Protein E1 (AvrE1) during Host Plant Infection

  • Received : 2021.07.08
  • Accepted : 2021.08.29
  • Published : 2021.10.01

Abstract

Pseudomonas cichorii secretes effectors that suppress defense mechanisms in host plants. However, the function of these effectors, including avirulence protein E1 (AvrE1), in the pathogenicity of P. cichorii, remains unexplored. In this study, to investigate the function of avrE1 in P. cichorii JBC1 (PcJBC1), we created an avrE1-deficient mutant (JBC1ΔavrE1) using CRISPR/Cas9. The disease severity caused by JBC1ΔavrE1 in tomato plants significantly decreased by reducing water soaking during early infection stage, as evidenced by the electrolyte leakage in infected leaves. The disease symptoms caused by JBC1ΔavrE1 in the cabbage midrib were light-brown spots compared to the dark-colored ones caused by PcJBC1, which indicates the role of AvrE1 in cell lysis. The avrE1-deficient mutant failed to elicit cell death in non-host tobacco plants. Disease severity and cell death caused by JBC1ΔavrE1 in host and non-host plants were restored through heterologous complementation with avrE1 from Pseudomonas syringae pv. tomato DC3000 (PstDC3000). Overall, our results indicate that avrE1 contributes to cell death during early infection, which consequently increases disease development in host plants. The roles of PcJBC1 AvrE1 in host cells remain to be elucidated.

Keywords

Acknowledgement

We gratefully acknowledge a grant from the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (No. 2017R1A2B2002221). This research was also partly supported by the Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ015566), and the Rural Development Administration.

References

  1. Aung, K., Jiang, Y. and He, S. Y. 2018. The role of water in plant-microbe interactions. Plant J. 93:771-780. https://doi.org/10.1111/tpj.13795
  2. Badel, J. L., Shimizu, R., Oh, H.-S. and Collmer, A. 2006. A Pseudomonas syringae pv. tomato avrE1/hopM1 mutant is severely reduced in growth and lesion formation in tomato. Mol. Plant-Microbe Interact. 19:99-111. https://doi.org/10.1094/MPMI-19-0099
  3. Beattie, G. A. 2011. Water relations in the interaction of foliar bacterial pathogens with plants. Annu. Rev. Phytopathol. 49:533-555. https://doi.org/10.1146/annurev-phyto-073009-114436
  4. Bogdanove, A. J., Kim, J. F., Wei, Z., Kolchinsky, P., Charkowski, A. O., Conlin, A. K., Collmer, A. and Beer, S. V. 1998. Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pathovar tomato. Proc. Natl. Acad. Sci. U. S. A. 95:1325-1330. https://doi.org/10.1073/pnas.95.3.1325
  5. Boureau, T., ElMaarouf-Bouteau, H., Garnier, A., Brisset, M.-N., Perino, C., Pucheu, I. and Barny, M.-A. 2006. DspA/E, a type III effector essential for Erwinia amylovora pathogenicity and growth in planta, induces cell death in host apple and nonhost tobacco plants. Mol. Plant-Microbe Interact. 19:16-24. https://doi.org/10.1094/MPMI-19-0016
  6. Chen, W., Zhang, Y., Zhang, Y., Pi, Y., Gu, T., Song, L., Wang, Y. and Ji, Q. 2018. CRISPR/Cas9-based genome editing in Pseudomonas aeruginosa and cytidine deaminase-mediated base editing in Pseudomonas species. iScience 6:222-231. https://doi.org/10.1016/j.isci.2018.07.024
  7. Cottyn, B., Heylen, K., Heyrman, J., Vanhouteghem, K., Pauwelyn, E., Bleyaert, P., van Vaerenbergh, J., Hofte, M., de Vos, P. and Maes, M. 2009. Pseudomonas cichorii as the causal agent of midrib rot, an emerging disease of greenhousegrown butterhead lettuce in Flanders. Syst. Appl. Microbiol. 32:211-225. https://doi.org/10.1016/j.syapm.2008.11.006
  8. DebRoy, S., Thilmony, R., Kwack, Y.-B., Nomura, K. and He, S. Y. 2004. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc. Natl. Acad. Sci. U. S. A. 101:9927-9932. https://doi.org/10.1073/pnas.0401601101
  9. Degrave, A., Fagard, M., Perino, C., Brisset, M. N., Gaubert, S., Laroche, S., Patrit, O. and Barny, M.-A. 2008. Erwinia amylovora type three-secreted proteins trigger cell death and defense responses in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21:1076-1086. https://doi.org/10.1094/MPMI-21-8-1076
  10. Frederick, R. D., Ahmad, M., Majerczak, D. R., Arroyo-Rodriguez, A. S., Manulis, S. and Coplin, D. L. 2001. Genetic organization of the Pantoea stewartii subsp. stewartii hrp gene cluster and sequence analysis of the hrpA, hrpC, hrpN, and wtsE operons. Mol. Plant-Microbe Interact. 14:1213-1222. https://doi.org/10.1094/MPMI.2001.14.10.1213
  11. Gaudriault, S., Malandrin, L., Paulin, J. P. and Barny, M. A. 1997. DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB-dependent way. Mol. Microbiol. 26:1057-1069. https://doi.org/10.1046/j.1365-2958.1997.6442015.x
  12. Ham, J. H., Majerczak, D. R., Arroyo-Rodriguez, A. S., Mackey, D. M. and Coplin, D. L. 2006. WtsE, an AvrE-family effector protein from Pantoea stewartii subsp. stewartii, causes disease-associated cell death in corn and requires a chaperone protein for stability. Mol. Plant-Microbe Interact. 19:1092-1102. https://doi.org/10.1094/MPMI-19-1092
  13. Ham, J. H., Majerczak, D. R., Ewert, S., Sreerekha, M.-V., Mackey, D. and Coplin, D. 2008. WtsE, an AvrE-family type III effector protein of Pantoea stewartii subsp. stewartii, causes cell death in non-host plants. Mol. Plant Pathol. 9:633-643. https://doi.org/10.1111/j.1364-3703.2008.00489.x
  14. Ham, J. H., Majerczak, D. R., Nomura, K., Mecey, C., Uribe, F., He, S.-Y., Mackey, D. and Coplin, D. L. 2009. Multiple activities of the plant pathogen type III effector proteins WtsE and AvrE require WxxxE motifs. Mol. Plant-Microbe Interact. 22:703-712. https://doi.org/10.1094/MPMI-22-6-0703
  15. Hatsugai, N., Igarashi, D., Mase, K., Lu, Y., Tsuda, Y., Chakravarthy, S., Wei, H.-L., Foley, J. W., Collmer, A., Glazebrook, J. and Katagiri, F. 2017. A plant effector-triggered immunity signaling sector is inhibited by pattern-triggered immunity. EMBO J. 36:2758-2769. https://doi.org/10.15252/embj.201796529
  16. Hogan, C. S., Mole, B. M., Grant, S. R., Willis, D. K. and Charkowski, A. O. 2013. The type III secreted effector DspE is required early in Solanum tuberosum leaf infection by Pectobacterium carotovorum to cause cell death, and requires Wx(3-6)D/E motifs. PLoS ONE 8:e65534. https://doi.org/10.1371/journal.pone.0065534
  17. Hojo, H., Koyanagi, M., Tanaka, M., Kajihara, S., Ohnishi, K., Kiba, A. and Hikichi, Y. 2008. The hrp genes of Pseudomonas cichorii are essential for pathogenicity on eggplant but not on lettuce. Microbiology 154:2920-2928. https://doi.org/10.1099/mic.0.2008/021097-0
  18. Hung, N. B., Ramkumar, G. and Lee, Y. H. 2014. An effector gene hopA1 influences on virulence, host specificity, and lifestyles of Pseudomonas cichorii JBC1. Res. Microbiol. 165:620-629. https://doi.org/10.1016/j.resmic.2014.08.001
  19. Jayaraman, J., Yoon, M., Applegate, E. R., Stroud, E. A. and Templeton, M. D. 2020. AvrE1 and HopR1 from Pseudomonas syringae pv. actinidiae are additively required for full virulence on kiwifruit. Mol. Plant Pathol. 21:1467-1480. https://doi.org/10.1111/mpp.12989
  20. Jin, L., Ham, J. H., Hage, R., Zhao, W., Soto-Hernandez, J., Lee, S. Y., Paek, S.-M., Kim, M. G., Boone, C., Coplin, D. L. and Mackey, D. 2016. Direct and indirect targeting of PP2A by conserved bacterial type-III effector proteins. PLoS Pathog. 12:e1005609. https://doi.org/10.1371/journal.ppat.1005609
  21. Kim, H.-S., Thammarat, P., Lommel, S. A., Hogan, C. S. and Charkowski, A. O. 2011. Pectobacterium carotovorum elicits plant cell death with DspE/F but the P. carotovorum DspE does not suppress callose or induce expression of plant genes early in plant-microbe interactions. Mol. Plant-Microbe Interact. 24:773-786. https://doi.org/10.1094/MPMI-06-10-0143
  22. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. and Higgins, D. G. 2007. ClustalW and ClustalX version 2. Bioinformatics 23:2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  23. Lorang, J. M., Shen, H., Kobayashi, D., Cooksey, D. and Keen, N. T. 1994. AvrA and AvrE in Pseudomonas syringae pv. tomato PT23 play a role in virulence on tomato plants. Mol. PlantMicrobe Interact. 7:508-515. https://doi.org/10.1094/MPMI-7-0508
  24. Mirik, M., Aysan, Y. and Sahin, F. 2011. Characterization of Pseudomonas cichorii isolated from different hosts in Turkey. Int. J. Agric. Biol. 13:203-209.
  25. Mor, H., Manulis, S., Zuck, M., Nizan, R., Coplin, D. L. and Barash, I. 2001. Genetic organization of the hrp gene cluster and dspAE/BF operon in Erwinia herbicola pv. gypsophilae. Mol. Plant-Microbe Interact. 14:431-436. https://doi.org/10.1094/MPMI.2001.14.3.431
  26. Nomura, K., Mecey, C., Lee, Y.-N., Imboden, L., Chang, J. H. and He, S. Y. 2011. Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 108:10774-10779. https://doi.org/10.1073/pnas.1103338108
  27. Pauwelyn, E., Huang, C.-J., Ongena, M., Leclere, V., Jacques, P., Bleyaert, P., Budzikiewicz, H., Schafer, M. and Hofte, M. 2013. New linear lipopeptides produced by Pseudomonas cichorii SF1-54 are involved in virulence, swarming motility, and biofilm formation. Mol. Plant-Microbe Interact. 26:585-598. https://doi.org/10.1094/MPMI-11-12-0258-R
  28. Pauwelyn, E., Vanhouteghem, K., Cottyn, B., de Vos, P., Maes, M., Bleyaert, P. and Hofte, M. 2011. Epidemiology of Pseudomonas cichorii, the cause of lettuce midrib rot. J. Phytopathol. 159:298-305. https://doi.org/10.1111/j.1439-0434.2010.01764.x
  29. Preston, G. M., Bertrand, N. and Rainey, P. B. 2001. Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol. Microbiol. 41:999-1014. https://doi.org/10.1046/j.1365-2958.2001.02560.x
  30. Ramkumar, G., Lee, S. W., Weon, H.-Y., Kim, B.-Y. and Lee, Y. H. 2015. First report on the whole genome sequence of Pseudomonas cichorii strain JBC1 and comparison with other Pseudomonas species. Plant Pathol. 64:63-70. https://doi.org/10.1111/ppa.12259
  31. West, S. E., Schweizer, H. P., Dall, C., Sample, A. K. and Runyen-Janecky, L. J. 1994. Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 148:81-86. https://doi.org/10.1016/0378-1119(94)90237-2
  32. Xin, X.-F., Nomura, K., Aung, K., Velasquez, A. C., Yao, J., Boutrot, F., Chang, J. H., Zipfel, C. and He, S. Y. 2016. Bacteria establish an aqueous living space in plants crucial for virulence. Nature 539:524-529. https://doi.org/10.1038/nature20166
  33. Xin, X.-F., Nomura, K., Ding, X., Chen, X., Wang, K., Aung, K., Uribe, F., Rosa, B., Yao, J., Chen, J. and He, S. Y. 2015. Pseudomonas syringae effector avirulence protein E localizes to the host plasma membrane and down-regulates the expression of the NONRACE-SPECIFIC DISEASE RESISTANCE1/HARPIN-INDUCED1-LIKE13 gene required for antibacterial immunity in Arabidopsis. Plant Physiol. 169:793-802. https://doi.org/10.1104/pp.15.00547
  34. Yu, S.-M. and Lee, Y. H. 2012. First report of Pseudomonas cichorii associated with leaf spot on soybean in South Korea. Plant Dis. 96:142.