DOI QR코드

DOI QR Code

Single Crystal Growth Behavior in High-Density Nano-Sized Aerosol Deposited Films

  • Lim, Ji-Ho (Dept. of Materials Science and Engineering, Inha University) ;
  • Kim, Seung-Wook (Dept. of Materials Science and Engineering, Inha University) ;
  • Kim, Samjung (Dept. of Materials Science and Engineering, Inha University) ;
  • Kang, Eun-Young (Dept. of Materials Science and Engineering, Inha University) ;
  • Lee, Min Lyul (Program in Metal.Materials Process Engineering, Inha University) ;
  • Samal, Sneha (Institute of Physics of the Czech Academy of Sciences) ;
  • Jeong, Dae-Yong (Dept. of Materials Science and Engineering, Inha University)
  • 투고 : 2021.08.10
  • 심사 : 2021.09.02
  • 발행 : 2021.09.27

초록

Solid state grain growth (SSCG) is a method of growing large single crystals from seed single crystals by abnormal grain growth in a small-grained matrix. During grain growth, pores are often trapped in the matrix and remain in single crystals. Aerosol deposition (AD) is a method of manufacturing films with almost full density from nano grains by causing high energy collision between substrates and ceramic powders. AD and SSCG are used to grow single crystals with few pores. BaTiO3 films are coated on (100) SrTiO3 seeds by AD. To generate grain growth, BaTiO3 films are heated to 1,300 ℃ and held for 10 h, and entire films are grown as single crystals. The condition of grain growth driving force is ∆Gmax < ∆Gc ≤ ∆Gseed. On the other hand, the condition of grain growth driving force in BaTiO3 AD films heat-treated at 1,100 and 1,200 ℃ is ∆Gc < ∆Gmax, and single crystals are not grown.

키워드

과제정보

This study was supported by the National Research Foundation of Korea (Grant No. NRF-2021R1F1A1062334).

참고문헌

  1. S.-J. L. Kang, J.-H. Park, S.-Y. Ko and H.-Y. Lee, J. Am. Ceram. Soc., 98, 347 (2015). https://doi.org/10.1111/jace.13420
  2. P. G. Le, T. L. Pham, D. T. Nguyen, J.-S. Lee, J. G. Fisher, H.-P. Kim and W. Jo, J. Asian Ceram. Soc., 9, 63 (2021). https://doi.org/10.1080/21870764.2020.1847426
  3. X. Jiang, J. Kim and K. Kim, Crystals, 4, 351 (2014). https://doi.org/10.3390/cryst4030351
  4. T. Zhang, J. Ou-Yang, X. Yang, W. Wei and B. Zhu, Electron. Mater. Lett., 15, 1 (2019). https://doi.org/10.1007/s13391-018-0091-5
  5. S. Pyo, J. Kim, H. Kim and Y. Roh, Sensor. Actuator. Phys., 283, 220 (2018). https://doi.org/10.1016/j.sna.2018.09.066
  6. T. Yamamoto and T. Sakuma, J. Am. Ceram. Soc., 77, 1107 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb07281.x
  7. D. Lee, H. Vu, H. Sun, T. L. Pham, D. T. Nguyen, J.-S. Lee and J. G. Fisher, Ceram. Int., 42, 18894 (2016). https://doi.org/10.1016/j.ceramint.2016.09.038
  8. E. Uwiragiye, M. U. Farooq, S.-H. Moon, T. L. Pham, D. T. Nguyen, J.-S. Lee and J. G. Fisher, J. Eur. Ceram. Soc., 37, 4597 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.06.015
  9. J. G. Fisher, A. Bencan and M. Kosec, J. Am. Ceram. Soc., 91, 1503 (2008). https://doi.org/10.1111/j.1551-2916.2008.02324.x
  10. A. Ikesue, Y. L. Aung, T. Yoda, S. Nakayama and T. Kamimura, Opt. Mater., 29, 1289 (2007). https://doi.org/10.1016/j.optmat.2005.12.013
  11. P. G. Le, H. T. Tran, J.-S. Lee, J. G. Fisher, H.-P. Kim, W. Jo and W.-J. Moon, J. Adv. Ceram., 10, 40145-1 (2021).
  12. M.-S. Kim, J. G. Fisher, S.-J. L. Kang and H.-Y. Lee, J. Am. Ceram. Soc., 89, 1237 (2006). https://doi.org/10.1111/j.1551-2916.2005.00883.x
  13. P. W. Rehrig, G. L. Messing and S. Trolier-McKinstry, J. Am. Ceram. Soc., 83, 2654 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01610.x
  14. D. Hanft, J. Exner, M. Schubert, T. Stocker, P. Fuierer and R. Moos, J. Ceram. Sci. Technol., 6, 147 (2015).
  15. S. Choi, D.-Y. Jeong and H. Kim, Adv. Appl. Ceram., 117, 328 (2018). https://doi.org/10.1080/17436753.2017.1422332
  16. J. Akedo, Mater. Sci. Forum, 43, 449 (2004).
  17. J. Akedo and M. Lebedev, Jpn. J. Appl. Phys., 40, 5528 (2001). https://doi.org/10.1143/JJAP.40.5528
  18. D.-M. Chun and S.-H. Ah, Acta Mater., 59, 2693 (2011). https://doi.org/10.1016/j.actamat.2011.01.007
  19. J.-J. Park, M.-W. Lee, S. S. Yoon, H.-Y. Kim, S. C. James, S. D. Heister, S. Chandra, W.-H. Yoon, D.-S. Park and J. Ryu, J. Therm. Spray Technol., 20, 514 (2011). https://doi.org/10.1007/s11666-010-9542-8
  20. J.-J. Choi, J. Ryu, B.-D. Hahn, W.-H. Yoon, B.-K. Lee and D.-S. Park, J. Mater. Sci., 44, 843 (2009). https://doi.org/10.1007/s10853-008-3132-x
  21. J.-M. Oh and S.-M. Nam, Thin Solid Films, 518, 6531 (2010). https://doi.org/10.1016/j.tsf.2010.03.159
  22. J. Ryu, B.-D. Hahn, J.-J. Choi, W.-H. Yoon, K.-Y. Kim, H.-S. Yun and D.-S. Park, Appl. Catal., B, 83, 1 (2008). https://doi.org/10.1016/j.apcatb.2008.01.020
  23. J. L. M. Rupp, A. Infortuna and L. J. Gauckler, Acta Mater., 54, 1721 (2006). https://doi.org/10.1016/j.actamat.2005.11.032
  24. T. Uchikoshi, T. S. Suzuki and Y. Sakka, J. Eur. Ceram. Soc., 30, 1171 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.06.025
  25. J.-H. Lim, C.-K. Park, Y. S. Lee, Y. M. Kong, K. H. Kang, H. S. Kim and D.-Y. Jeong, Korean J. Met. Mater., 54, 164 (2016). https://doi.org/10.3365/KJMM.2016.54.3.164
  26. J.-S. Lee, S. Yoon, J.-H. Lim, C.-K. Park, J. Ryu and D.-Y. Jeong, Korean J. Mater. Res., 29, 73 (2019). https://doi.org/10.3740/MRSK.2019.29.2.73
  27. E. B. Slamovich and F. E. Lange, J. Am. Ceram. Soc., 75, 2498 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb05603.x
  28. J. G. Fisher, H. Sun, Y.-G. Kook, J.-S. Kim and P. G. Le, J. Magn. Magn. Mater., 416, 384 (2016). https://doi.org/10.1016/j.jmmm.2016.04.079