DOI QR코드

DOI QR Code

Effect of Al Addition on the Cryogenic-Temperature Impact Properties of Austenitic Fe-23Mn-0.4C Steels

알루미늄 첨가에 따른 오스테나이트계 Fe-23Mn-0.4C 고망간강의 극저온 충격 특성

  • Kim, Sang-Gyu (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Kim, Jae-Yoon (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Yun, Tae-Hee (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 김상규 (서울과학기술대학교 신소재공학과) ;
  • 김재윤 (서울과학기술대학교 신소재공학과) ;
  • 윤태희 (서울과학기술대학교 신소재공학과) ;
  • 황병철 (서울과학기술대학교 신소재공학과)
  • Received : 2021.08.14
  • Accepted : 2021.09.05
  • Published : 2021.09.27

Abstract

The impact properties of two austenitic Fe-23Mn-0.4C steels with different Al contents for cryogenic applications are investigated in this study. The 4Al steel consists mostly of austenite single-phase microstructure, while the 5Al steel exhibits a two-phase microstructure of austenite and delta-ferrite with coarse and elongated grains. Charpy impact test results reveal that the 5Al steel with duplex phases of austenite and delta-ferrite exhibits a ductile-to-brittle transition behavior, while the 4Al steel with only single-phase austenite has higher absorbed energy over 100 J at -196 ℃. The SEM fractographs of Charpy impact specimens show that the 4Al steel has a ductile dimple fracture regardless of test temperature, whereas the 5Al steel fractured at -100 ℃ and -196 ℃ exhibits a mixed fracture mode of both ductile and brittle fractures. Additionally, quasi-cleavage fracture caused by crack propagation of delta-ferrite phase is found in some regions of the brittle fracture surface of the 5Al steel. Based on these results, the delta-ferrite phase hardly has a significant effect on absorbed energy at room-temperature, but it significantly deteriorates low-temperature toughness by acting as the main site of the propagation of brittle cracks at cryogenic-temperatures.

Keywords

References

  1. P. Mallick, N. K. Tewary, S. K. Ghosh and P. P. Chattopadhyay, Mater. Charact., 133, 77 (2017). https://doi.org/10.1016/j.matchar.2017.09.027
  2. J. Kim, S. Choi, D. Park and J. Lee, Mater. Des., 65, 914 (2015). https://doi.org/10.1016/j.matdes.2014.09.085
  3. E. D. Marquardt, J. P. Le and R. Radebaugh, Cryogenic Material Properties Database, R. G. Ross Jr. ed., p. 681, Cryocoolers 11, Kluwer Academic Publishers, Boston (2002).
  4. C. W. Marschall, R. F. Hehemann and A. R. Troiano, Trans. ASM, 55, 135 (1962).
  5. M. Choi, J. Lee, H. Nam, N. Kang, M. Kim and D. Cho, Met. Mater. Int., 26, 240 (2020). https://doi.org/10.1007/s12540-019-00320-4
  6. Y. Tomota, M. Strum and J. W. Morris, Metall. Trans. A, 18, 1073 (1991). https://doi.org/10.1007/BF02668556
  7. J. Lee, S. S. Sohn, S. Hong, B. C. Suh, S. K. Kim, B. J. Lee, N. J. Kim and S. Lee, Metall. Mater. Trans. A, 45, 5419 (2014). https://doi.org/10.1007/s11661-014-2513-9
  8. S. S. Sohn, S. Hong, J. Lee, B. C. Suh, S. K. Kim, B. J. Lee, N. J. Kim and S. Lee, Acta Mater., 100, 39 (2015). https://doi.org/10.1016/j.actamat.2015.08.027
  9. J. S. Kim, J. B. Jeon, J. E. Jung, K. K. Um and Y. W. Chang, Met. Mater. Int., 20, 41 (2014). https://doi.org/10.1007/s12540-014-1010-4
  10. D. Kim, G. H. Jang. T. Lee, C. S. Lee, Met. Mater. Int., 26, 1741 (2020). https://doi.org/10.1007/s12540-019-00514-w
  11. S. I. Lee, S. Y. Lee, J. Han and B. Hwang, Mater. Sci. Eng., A, 742, 334 (2019). https://doi.org/10.1016/j.msea.2018.10.107
  12. S. Allain, J. P. Chateau and O. Bouaziz, Mater. Sci. Eng., A, 387, 143 (2004). https://doi.org/10.1016/j.msea.2004.01.060
  13. L. Remy and A. Pineau, Mater. Sci. Eng., A, 28, 99 (1977). https://doi.org/10.1016/0025-5416(77)90093-3
  14. Y. K. Lee and C. Choi, Metall. Mater. Trans. A, 31, 355 (2000). https://doi.org/10.1007/s11661-000-0271-3
  15. G. B. Olson and M. Cohen, Metall. Trans. A, 7, 1897 (1976). https://doi.org/10.1007/BF02659822
  16. S. Curtze, V. T. Kuokkala, A. Oikari, J. Talonen and H. Hanninen, Acta Mater., 59, 1068 (2011). https://doi.org/10.1016/j.actamat.2010.10.037
  17. S. Y. Lee, S. I. Lee and B. Hwang, Mater. Sci. Eng., A, 711, 22 (2018). https://doi.org/10.1016/j.msea.2017.10.074
  18. Y. Kwon, J. H. Hwang, H. C. Choi, T. T. T. Trang, B. Kim, A. Zargaran and N. J. Kim, Met. Mater. Int., 26, 75 (2020). https://doi.org/10.1007/s12540-019-00314-2
  19. I. Gutierrez-Urrutia and D. Raabe, Acta Mater., 60, 5791 (2012). https://doi.org/10.1016/j.actamat.2012.07.018
  20. S. S. Sohn, B. J. Lee, S. Lee, N. J. Kim and J. H. Kwak, Acta Mater., 61, 5050 (2013). https://doi.org/10.1016/j.actamat.2013.04.038
  21. H. Kim, D. W. Suh and N. J. Kim, Sci. Technol. Adv. Mater., 14, 1 (2013).
  22. S. H. Kim, H. Kim and N. J. Kim, Nature, 518, 77 (2015). https://doi.org/10.1038/nature14144
  23. B. Fu, C. Pei, Y. Guo, L. Fu and A. Shan, Mater. Sci. Technol., 36, 827 (2020). https://doi.org/10.1080/02670836.2020.1744247
  24. L. Fu, L. Fan, Z. Li, N. Sun, H. Wang, W. Wang and A. Shan, Mater. Sci. Eng., A, 582, 126 (2013). https://doi.org/10.1016/j.msea.2013.05.087
  25. L. Fu, M. Shan, D. Zhang, H. Wang, W. Wang and A. Shan, Metall. Mater. Trans. A, 48, 2179 (2017). https://doi.org/10.1007/s11661-017-3994-0
  26. G. E. Dieter, Mechanical Metallurgy, 3rd ed., p.333, McGraw-Hill book Co., New York (1986).