DOI QR코드

DOI QR Code

Review of the Application of Artificial Intelligence in Blasting Area

발파 분야에서의 인공지능 활용 현황

  • 김민주 (인하대학교 에너지자원공학과) ;
  • ;
  • 권상기 (인하대학교 에너지자원공학과)
  • Received : 2021.07.20
  • Accepted : 2021.08.10
  • Published : 2021.09.30

Abstract

With the upcoming 4th industrial revolution era, the applications of artificial intelligence(AI) and big data in engineering are increasing. In the field of blasting, there have been various reported cases of the application of AI. In this paper, AI techniques, such as artificial neural network, fuzzy logic, generic algorithm, swarm intelligence, and support vector machine, which are widely applied in blasting area, are introduced, The studies about the application of AI for the prediction of ground vibration, rock fragmentation, fly rock, air overpressure, and back break are surveyed and summarized. It is for providing starting points for the discussion of active application of AI on effective and safe blasting design, enhancing blasting performance, and minimizing the environmental impact due to blasting.

4차 산업혁명 시대의 도래와 함께 빅데이터의 활용과 인공지능 기법을 활용한 공학적 응용이 증가하고 있다. 발파 분야에서도 인공지능 기법을 활용한 다양한 연구들이 보고되고 있다. 본 논문에서는 발파분야에서 많이 활용되고 있는 인공신경망, 퍼지 이론, 유전자 알고리즘, 떼 지능, 서포트 벡터머신과 같은 인공지능 기법을 소개하고 이들 기법을 이용한 발파진동, 비석, 암석 파쇄도, 폭풍압, 여굴 예측 기법에 대한 연구들을 조사, 정리하였다. 향후 인공지능 기법을 활용하여 보다 효율적이고 안전한 발파설계, 발파 효율 향상과 발파에 의한 주변 환경에 미치는 영향을 최소화하기 위하기 위한 발전적인 접근 방향에 대한 논의에 활용할 수 있는 기초 자료를 제공하고자 한다.

Keywords

Acknowledgement

이 논문은 한국연구재단의 이공분야기초연구사업(NRF-2019R1D1A1060884)의 지원으로 수행되었습니다.

References

  1. 김남수, 양형식, 1996, 가속신경회로망에 의한 암반의 물성 추정 연구, 한국암반공학회 학술대회 및 세미나 자료집, pp. 35-41.
  2. 김남수, 이종우, 조경빈, 2013, 보안물건의 종류에 따른 발파진동 허용기준 적용 사례 및 문제점 개선 연구, 화약.발파, Vol. 31, No.2, pp. 50-58.
  3. 김영수, 정성관, 이상웅, 이동현, 2003, 인공신경망을 이용한 현장지반의 장래 침하량 산정, 한국지반공학회논문집, Vol. 19, No. 5, pp. 27-33.
  4. 김현우, 김영근, 이희근, 1999, 인공신경망을 이용한 터널 건전도 평가시스템 개발, 터널과 지하공간, Vol. 9, No. 1, pp. 48-55.
  5. 김홍흠, 임희대, 2016, 인공신경망 기법을 이용한 터널 붕괴 예측에 관한 기초 연구, 한국지반공학회논문집, Vol. 32, No. 2, pp. 5-17. https://doi.org/10.7843/kgs.2016.32.2.5
  6. 손무락, 정연권, 유준석, 황영철, 문두형, 2013, 국내.외 발파진동허용기준에 대한 고찰, 자연, 터널 그리고 지하공간, Vol. 15, No. 5, pp. 29-42.
  7. 양형식, 김재철, 1999, 인공신경망을 이용한 한국형 터널 암반분류, 터널과 지하공간, Vol. 9, No. 3, pp. 214-220.
  8. 유광호, 전석원, 2013, 인공신경망을 이용한 터널 주변 폭파 시 파쇄영역의 빠른 예측에 관한 연구, 터널과 지하공간, Vol. 15, No. 2, pp. 81-95.
  9. 이상호, 김동락, 서인식, 2012, 인공신경망을 이용한 퇴적암의 압축강도 예측, 한국농공학회논문집, Vol. 65, No. 5, pp. 43-47
  10. 이인모, 조계춘, 이정학, 1998, 인공신경망을 이용한 암반의 투수계수 예측, 한국지반공학회지, Vol. 14, No. 2, pp. 161-162.
  11. 임성빈, 김교원, 서용석, 2005, 대구지역 퇴적암의 일축압축강도 예측을 위한 인공신경망 적용, 2005, Vol. 15, No. 1, pp. 67-76.
  12. Ak, H. and Konuk, A., 2008, The effect of discontinuity frequency on ground vibrations produced from bench blasting: a case study. Soil Dynamics and Earthquake Engineering, Vol. 28, No. 9, pp. 686-694. https://doi.org/10.1016/j.soildyn.2007.11.006
  13. Ali, Y. H., Ali, S. M., Rahman, R. A. and Hamzah, R. I. R., 2016, Acoustic emission and artificial intelligent methods in condition monitoring of rotating machine - a review, The National Conference for Postgraduate Research(NCON-PGR 2016), University Malaysia Pahang.
  14. Alvarez, V. A. E., Gonzalez, N. C., Lopez, G. F. and Alvarez F. M. I., 2012, Predicting blasting propagation velocity and vibration frequency using artificial neural network, International Journal of Rock Mechanics and Mining Science, Vol. 55, pp. 108-116. https://doi.org/10.1016/j.ijrmms.2012.05.002
  15. Amini, H., Gholami, R., Monjezi, M., Torabi, S. R. and Zadhesh, J., 2012, Evaluation of flyrock phenomenon due to blasting operation by support vector machine, Neural Computing and Applications, Vol. 21, No. 8, pp. 2077-2085. https://doi.org/10.1007/s00521-011-0631-5
  16. Amiri M., Amnieh H. B., Hasanipanah M. and Khanli L. M., 2016, A new combination of artificial neural network and K-nearest neighbors models to predict blast-induced ground vibration and air-overpressure, Engineering with Computers, Vol. 32, No. 4, pp. 631-644. https://doi.org/10.1007/s00366-016-0442-5
  17. Ammeri, A., Hachicha, W. and Chabchoub, H., 2014, Iterative simulation optimization approach-based genetic algorithm for lot-sizing problem in make-to-order sector, International Journal of Business Performance and Supply Chain Modelling, Vol. 6, No. 3-4, pp. 376-394. https://doi.org/10.1504/IJBPSCM.2014.065278
  18. Arciszewski, T, 1992, Machine learning in knowledge acquisition, Knowledge Acquisition in Civil Engineering ASCE, New York, pp. 50-68.
  19. Armaghani, J. D., Hajihassani, M., Mohamad, E. T., Marto, A. and Noorani, S. A., 2014, Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization, Arabian Journal Geosciences, Vol. 7, No. 12, pp. 5383-5396. https://doi.org/10.1007/s12517-013-1174-0
  20. Armaghani, J. D., Mohamad, E. T., Hajihassani, M., Abad, S., Marto, A. and Moghaddam, M. R., 2015a, Evaluation and prediction of flyrock resulting from blasting operations using empirical and computational methods, Engineering with Computers, Vol. 32, No. 1, pp. 109-121. https://doi.org/10.1007/s00366-015-0402-5
  21. Armaghani, J. D., Hajihassani, M., Monjezi, M., Mohamad, E. T., Marto, A. and Moghaddam, M. R., 2015b, Application of two intelligent systems in predicting environmental impacts of quarry blasting, Arabian Journal Geosciences, Vol. 8, No. 11, pp. 9647-9665. https://doi.org/10.1007/s12517-015-1908-2
  22. Armaghani, J. D., Momeni, E., Khalil, A. S. and Khandelwal, M., 2015c, Feasibility of ANFIS model for prediction of ground vibrations resulting from quarry blasting, Environmental Earth Sciences, Vol. 74, No. 4, pp. 2845-2860. https://doi.org/10.1007/s12665-015-4305-y
  23. Asl, P. F., Monjezi, M., Hamidi, J. K. and Armaghani, D. J., 2018, Optimization of flyrock and rock fragmentation in the Tajareh limestone mine using metaheuristics method of firefly algorithm, Engineering with Computers, Vol. 34, No. 2, pp. 241-251. https://doi.org/10.1007/s00366-017-0535-9
  24. Bahrami, A., Monjezi, M., Goshtasbi, K. and Ghazvinian, A., 2011, Prediction of rock fragmentation due to blasting using artificial neural network, Engineering with Computers, Vol. 27, No. 2, pp. 177-181. https://doi.org/10.1007/s00366-010-0187-5
  25. Bai, Y. and Wang, D., 2006, Fundamentals of fuzzy logic control-fuzzy sets, fuzzy rules and defuzzification, Advanced Fuzzy Logic Technologies in Industrial Applications, Springer, London, pp. 17-36.
  26. Bholea, K., Agasheb, S. and Wadgaonkarc, J., 2018, How expert is EXPERT for fuzzy logic based system, International Proceedings on Advances in Soft Computing, Intelligent Systems and Applications, Springer, Singapore, pp. 29-36.
  27. Boser, B. E., Guyon, I. M. and Vapnik, V. N., 1992, A training algorithm for optimal margin classifiers, Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144-152.
  28. Carbonell, J., 2003, Artificial intelligence 15-381 today: introduction to AI and search methods, www.cs. cmu.edu/-15381/Lectures/intro-search.ppt.
  29. Cawsey, A. and Aylett, R., 2009, Artificial intelligence introduction, www.macs.hw.ac.uk/-alison/ai3/ppt/l1.ppt.
  30. Cunningham, C. V. B., 1987, Fragmentation estimations and the Kuz-Ram model-Four years on, Proceedings of the 2nd International Symposium on Rock Fragmentation by Blasting, pp. 475-487.
  31. Dhekne, P. Y., Pradhan, M., Jade, R. K. and Mishra, R., 2017, Boulder prediction in rock blasting using artificial neural network, ARPN Journal of Engineering and Applied Sciences Vol. 12, No. 1, pp. 47-61.
  32. Dorigo, M. and Di Caro, G., 1999, Ant colony optimization: a new meta-heuristic, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), IEEE, Vol. 2, pp. 1470-1477.
  33. Eberhart, R., and Kennedy, J., 1995, Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks Vol. 4, pp. 1942-1948.
  34. Ebrahimi, E., Monjezi, M., Khalesi, M. R. and Armaghani, D. J., 2015, Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm, Bulletin of Engineering Geology and Environment, Vol. 75, No. 1, pp. 27-36. https://doi.org/10.1007/s10064-015-0720-2
  35. Enayatollahi, I., Bazzazi, A. A. and Asadi, A., 2014, Comparison between neural networks and multiple regression analysis to predict rock fragmentation in open-pit mines, Rock Mechanics and Rock Engineering, Vol. 47, No. 2, pp. 799-807. https://doi.org/10.1007/s00603-013-0415-6
  36. Esmaeili, M., Salimi, A., Drebenstedt, C., Abbaszadeh, M. and Bazzazi, A. A., 2014a, Application of PCA, SVR, and ANFIS for modeling of rock fragmentation, Arabian Journal of Geosciences, Vol. 8, No. 9, pp. 6881-6893. https://doi.org/10.1007/s12517-014-1677-3
  37. Esmaeili, M., Osanloo, M., Rashidinejad, F., Bazzazi, A. A. and Taji, M., 2014b, Multiple regression, ANN and ANFIS models for prediction of backbreak in the open pit blasting, Engineering with computers, Vol. 30, No. 4, pp. 549-558. https://doi.org/10.1007/s00366-012-0298-2
  38. Fisne, A., Kuzu, C. and Hudaverdi, T., 2011, Prediction of environmental impacts of quarry blasting operation using fuzzy logic, Environmental Monitoring and Assessment, Vol. 174, No. 1-4, pp. 461-470. https://doi.org/10.1007/s10661-010-1470-z
  39. Gao, F., Zhang, K., Xie, B. and Xiaoqiang, W., 2002, Using intelligent approach to predict blast-induced ground vibration, Journal of Convergence Information Technology, Vol. 7, No. 14, pp. 32.
  40. Gate, W. C., Ortiz, B. L. T. and Florez, R. M., 2005, Analysis of rockfall and blasting backbreak problems, Paper ARMA/USRMS, Proceedings of the American rock mechanics conference, Vol. 5, pp. 671-680.
  41. Ghasemi, E., Amini, H., Ataei, M. and Khalokakaei, R., 2014, Application of artificial intelligence techniques for predicting the flyrock distance caused by blasting operation, Arabian Journal of Geosciences, Vol. 7, No. 1, pp. 193-202. https://doi.org/10.1007/s12517-012-0703-6
  42. Ghasemi, E., Araei, M. and Hashemolhosseini, H., 2012, Development of a fuzzy model for predicting ground vibration caused by rock blasting in surface mining, Journal of Vibration and Control, Vol. 19, No. 5, pp. 755-770. https://doi.org/10.1177/1077546312437002
  43. Ghasemi, E., Kalhori, H. and Bagherpour, R., 2016, A new hybrid ANFIS-PSO model for prediction of peak particle velocity due to bench blasting, Engineering with Computers, Vol. 32, No. 4, pp. 607-614. https://doi.org/10.1007/s00366-016-0438-1
  44. Gheibie, S., Aghababaei, H., Hoseinie, S. H. and Pourrahimian, Y., 2009, Modified Kuz-Ram fragmentation model and its use at the Sungun Copper Mine, International Journal of Rock Mechanics and Mining Sciences, Vol. 46, No. 6, pp. 967-973. https://doi.org/10.1016/j.ijrmms.2009.05.003
  45. Ghorpade-Aher, J. and Metre V. A., 2014, PSO based multidimensional data clustering: A survey, International Journal of Computer Applications, Vol. 87, No. 16, pp. 41-48. https://doi.org/10.5120/15296-4040
  46. Gorgulu, K., Arpaz, E., Demirci, A., Kocaslan, A., Dilmac, M. K. and Yuksek, A. G., 2013, Investigation of blast-induced ground vibrations in the Tulu boron open pit mine, Bulletin of Engineering Geology and the Environment, Vol. 72, No. 3, pp. 555-564. https://doi.org/10.1007/s10064-013-0521-4
  47. Hajihassani, M., Armaghani, D. J., Monjezi, M., Mohamad, E. T. and Marto, A., 2015a, Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach, Environmental Earth Sciences, Vol. 74, No. 4, pp. 2799-2817. https://doi.org/10.1007/s12665-015-4274-1
  48. Hajihassani, M., Armaghani, D. J., Marto, A. and Mohamad, E. T., 2015b, Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm, Bulletin of Engineering Geology and the Environment, Vol. 74, No. 3, pp. 873-886. https://doi.org/10.1007/s10064-014-0657-x
  49. Hajihassani, M., Armaghani, D. J., Sohaei, H., Mohamad, E. T. and Marto, A., 2014, Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization, Applied Acoustics, Vol. 80, pp. 57-67. https://doi.org/10.1016/j.apacoust.2014.01.005
  50. Hasanipanah, M., Armaghani, D. J., Amnieh, H. B., Abd Majid, M. Z. and Tahir, M. M., 2016, Application of PSO to develop a powerful equation for prediction of flyrock due to blasting, Neural Computing and Applications, Vol. 28, No. 1, pp. 1043-1050.
  51. Hasanipanah, M., Monjezi, M., Shahnazar, A., Armaghani, D. J. and Farazmand, A., 2015, Feasibility of indirect determination of blast induced ground vibration based on support vector machine, Measurement, Vol. 75, pp. 289-297. https://doi.org/10.1016/j.measurement.2015.07.019
  52. Hasanipanah, M., Naderi, R., Kashir, J., Noorani, S. A. and Qaleh, A. Z. A., 2017, Prediction of blast-produced ground vibration using particle swarm optimization, Engineering with Computers, Vol. 33, No. 2, pp. 173-179. https://doi.org/10.1007/s00366-016-0462-1
  53. Holland, J. H., 1975, Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor.
  54. Hustrulid, W., 1999, Blasting principles for open pit mining: general design concepts, A. A. Balkema, Rotterdam, pp. 285-289.
  55. Iphar, M., Yavuz, M. and Ak, H., 2008, Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system, Environmental Geology, Vol. 56, No. 1, pp. 97-107. https://doi.org/10.1007/s00254-007-1143-6
  56. ISRM, 1992, Suggested method for blast vibration monitoring, International Journal of Rock Mechanics and Mining Sciences and Geomechanical Abstract, Vol. 29, No. 2, pp. 145-146.
  57. Jain, A. K., Mao, J. and Mohiuddin, K. M., 1996, Artificial neural networks: a tutorial, Journal IEEE Computer, Vol. 29, No. 3, pp. 31-44.
  58. Jenkins, S. S Jr. and Floyd, J., 2000, Stemming enhancement tests. In: Proceedings of the 26th annual conference on explosives and blasting technology, February 13-16, Anaheim, Vol. 2, pp. 191-204.
  59. Jenkins, S. S., 1981, Adjusting blast design for best results, Pit and Quarry, Rotterdam.
  60. Kabwe E., 2018, Velocity of detonation measurement and fragmentation analysis to evaluate blasting efficacy, Journal of Rock Mechanics and Geotechnical Engineering, Vol. 10, No. 3, pp. 523-533. https://doi.org/10.1016/j.jrmge.2017.12.003
  61. Kanchibotla, S. S., Valery, W. and Morrell, S., 1999, Modelling fines in blast fragmentation and its impact on crushing and grinding, Proceedings of Explo'99-a conference on rock breaking, Kalgoorlie, WA, 7-11. The Australasian Institute of Mining and Metallurgy, Carlton, pp. 137-144.
  62. Kennedy, J. and Eberhart, R., 1995, Particle swarm optimization, Proceedings of the IEEE International Conference on Neural Networks, Vol. 4, pp. 1942-1948.
  63. Khandelwal, M., Kankar, P. K. and Harsha, S., 2010, Evaluation and prediction of blast induced ground vibration using support vector machine, Mining Science and Technology, Vol. 20, No. 1, pp. 64-70. https://doi.org/10.1016/S1674-5264(09)60162-9
  64. Khandelwal, M. and Kankar, P. K., 2011, Prediction of blast-induced air overpressure using support vector machine, Arabian Journal of Geosciences, Vol. 4, No. 3-4, pp. 427-433. https://doi.org/10.1007/s12517-009-0092-7
  65. Khandelwal, M., Kumar, D. L. and Yellishetty, M., 2011, Application of soft computing to predict blast-induced ground vibration, Engineering with Computers, Vol. 27, No. 2, pp. 117-125. https://doi.org/10.1007/s00366-009-0157-y
  66. Khandelwal, M. and Monjezi, M., 2013a, Prediction of flyrock in open pit blasting operation using machine learning method, International Journal of Mining Science and Technology, Vol. 23, No. 3, pp. 313-316. https://doi.org/10.1016/j.ijmst.2013.05.005
  67. Khandelwal, M. and Monjezi, M., 2013b, Prediction of backbreak in open-pit blasting operations using the machine learning method, Rock Mechanics and Rock Engineering, Vol. 46, No. 2, pp. 389-396. https://doi.org/10.1007/s00603-012-0269-3
  68. Khandelwal, M. and Singh, T. N., 2005, Prediction of blast induced air overpressure in opencast mine, Noise & Vibration Worldwide, Vol. 36, No. 2, pp. 7-16. https://doi.org/10.1260/0957456053499095
  69. Khandelwal, M. and Singh, T. N., 2009, Prediction of blast-induced ground vibration using artificial neural network, International Journal of Rock Mechanics and Mining Sciences, Vol. 46, No. 7, pp. 1214-1222. https://doi.org/10.1016/j.ijrmms.2009.03.004
  70. Konya, C. J., 2003, Rock blasting and overbreak control(2nd ed), USA: National Highway Institute, FHWA-HI-92-001.
  71. Konya, C. J. and Walter, E. J., 1991, Rock blasting and overbreak control. FHWA Report-FHWA-HI-92-001.
  72. Kricak, L., Kecojevic, V., Negovanovic, M., Jankovic, I. and Zekovic, D., 2012, Environmental and safety accidents related to blasting operation, American journal of environmental sciences, Vol. 8, No. 4, pp. 360-365. https://doi.org/10.3844/ajessp.2012.360.365
  73. Kulatilake, P. H. S. W., Wu, Q., Hudaverdi, T. and Kuzu, C., 2010, Mean particle size prediction in rock blast fragmentation using neural networks, Engineering Geology, Vol. 114, No. 34, pp. 298-311. https://doi.org/10.1016/j.enggeo.2010.05.008
  74. Kumar, R., Choudhury, D. and Bhargava, K., 2016, Determination of blast-induced ground vibration equations for rocks using mechanical and geological properties, Journal of Rock Mechanics and Geotechnical Engineering, Vol. 8, No. 3, pp. 341-349. https://doi.org/10.1016/j.jrmge.2015.10.009
  75. Kuznetsov, V. M., 1973, The mean diameter of the fragments formed by blasting rock, Soviet Mining Sciences, Vol. 9, No. 2, pp. 144-148. https://doi.org/10.1007/BF02506177
  76. Kuzu, C., Fisne, A. and Ercelebi, S. G., 2009, Operational and geological parameters in the assessing blast induced airblast-overpressure in quarries, Applied Acoustics, Vol. 70, No. 3, pp. 404-411. https://doi.org/10.1016/j.apacoust.2008.06.004
  77. Kuzu, C., 2008, The importance of site-specific characters in prediction models for blast induced ground vibrations, Soil dynamics and Earthquake Engineering, Vol. 28, No. 5, pp. 405-414. https://doi.org/10.1016/j.soildyn.2007.06.013
  78. Kwon, S. and Cho, W. J., 2009, A sensitivity analysis of design parameters of an underground radioactive waste repository using a backpropagation neural network, Tunnel and Underground Space, Vol. 19, No. 3, pp. 203-212.
  79. Kwon, S. and Lee, C., 2018, THM analysis for an in-situ experiment using FLAC3D-TOUGH2 and an artificial neural network, Geomechanics & engineering, Vol. 16, No. 4, pp. 363-373. https://doi.org/10.12989/GAE.2018.16.4.363
  80. Kwon, S., Lee, C., Jeon, S. W. and Choi, H. J., 2013, Thermo-mechanical coupling analysis of APSE using submodels and neural networks, Journal of Rock Mechanical and Geotechnical Engineering, Vol. 5, No. 1, pp. 32-43. https://doi.org/10.1016/j.jrmge.2012.06.002
  81. Lawal, A. I. and Kwon, S., 2021, Application of artificial intelligence in rock mechanics: an overview, Journal of Rock Mechanics and Geotechnical Engineering, Vol. 13, pp. 248-266. https://doi.org/10.1016/j.jrmge.2020.05.010
  82. Le, L. M., Ly, H. B., Pham, B. T., Le, V. M., Pham, T. A., Nguyen, D. H., ... and Le, T. T., 2019, Hybrid artificial intelligence approaches for predicting buckling damage of steel columns under axial compression, Materials, Vol. 12, No. 10, pp. 1670. https://doi.org/10.3390/ma12101670
  83. Lee, C. and Sterling, R., 1992, Identifying probable failure modes for underground openings using a neural network, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 29, No. 1, pp. 49-67. https://doi.org/10.1016/0148-9062(92)91044-6
  84. Leu, S. S., Chen, C. N. and Chang, S. L., 2001, Data mining for tunnel support stability: neural network approach, Automation in Construction, Vol. 10, No. 4, pp. 429-441. https://doi.org/10.1016/S0926-5805(00)00078-9
  85. Leu, S. S. and Lo, H. C., 2004, Neural-network-based regression model of ground surface settlement induced by deep excavation, Automation in Construction, Vol. 10, No. 3, pp. 429-441.
  86. Lu, W., Yang, J., Chen, M. and Zhou, C., 2011, An equivalent method for blasting vibration simulation, Simulation Modelling Practice and Theory, Vol. 19, No. 9, pp. 2050-2062. https://doi.org/10.1016/j.simpat.2011.05.012
  87. Maerz, N. H. and Zhou, W., 2000, Calibration of optical digital fragmentation measuring systems, Fragblast-International Journal for Blasting and Fragmentation, Vol. 4, No. 2, pp. 126-138.
  88. Majid, G., Nematollah, A., Dindarloo, S. R. and Hamed, S., 2016, Prediction of blast boulders in open pit mines via multiple regression and artificial neural networks, International Journal of Mining Science and Technology, Vol. 26, No. 2, pp. 183-186. https://doi.org/10.1016/j.ijmst.2015.12.001
  89. Marto, A., Hajihassani, M., Armaghani, D. J., Mohamad, E. T. and Makhtar, A. M., 2014, A novel approach for blast induced flyrock prediction based on imperialist competitive algorithm and artificial neural network, Scientific World Journal, Vol. 5, pp. 643-715.
  90. McCulloch, W. S. and Pitts, W., 1943, A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, Vol. 5, No. 4, pp. 115-133. https://doi.org/10.1007/BF02478259
  91. McKenzie, C. K., 2009, Flyrock range and fragment size prediction Proceedings of the 35th annual conference on explosives and blasting technique, International Society of Explosives Engineers, Vol. 2.
  92. Mehrdanesh, A., Monjezi, M. and Sayadi, A. R., 2018, Evaluation of effect of rock mass properties on fragmentation using robust techniques, Engineering with Computers, Vol. 34, No. 2, pp. 253-260. https://doi.org/10.1007/s00366-017-0537-7
  93. Michalski, R. S., Michalski, I., Bratko, I. and Kubat, M., 1998, Machine Learning and Data Mining: Methods and Applications, Wiley, New York.
  94. Mohamad, E. T., Hajihassani, M., Armaghani, D. J. and Marto, A., 2012, Simulation of blasting-induced air overpressure by means of artificial neural networks, International Review on Modelling and Simulations, Vol. 5, No. 6, pp. 2501-2506.
  95. Mohamed, M. T., 2011a, Performance of fuzzy logic and artificial neural network in prediction of ground and air vibrations, JES, Journal of Engineering Sciences, Vol. 39, No. 2, pp. 425-440. https://doi.org/10.21608/jesaun.2011.127550
  96. Mohamed, M. T., 2011b, Performance of fuzzy logic and artificial neural network in prediction of ground and air vibrations, International Journal of Rock Mechanics and Mining Sciences, Vol. 48, No. 5, pp. 845-851. https://doi.org/10.1016/j.ijrmms.2011.04.016
  97. Mohammadnejad, M., Gholami, R., Ramazanzadeh, A. and Jalali, M. E., 2012, Prediction of blast-induced vibrations in limestone quarries using support vector machine, Journal of Vibration and Control, Vol. 18, No. 9, pp. 1322-1329. https://doi.org/10.1177/1077546311421052
  98. Mohammadnejad, M., Gholami, R., Sereshki, F. and Jamshidi, A. A., 2013, New methodology to predict backbreak in blasting operation, International journal of rock mechanics and mining sciences(1997), Vol. 60, pp. 75-81. https://doi.org/10.1016/j.ijrmms.2012.12.019
  99. Monjezi, H., Gholami, R., Monjezi, M., Torabi, S. R. and Zadhesh, J., 2012, Evaluation of flyrock phenomenon due to blasting operation by support vector machine, Neural Computing and Applications, Vol. 21, No. 8, pp. 2077-2085. https://doi.org/10.1007/s00521-011-0631-5
  100. Monjezi, M. and Dehghani, H., 2008, Evaluation of effect of blasting pattern parameters on back break using neural networks, International Journal of Rock Mechanics and Mining Sciences, Vol. 45, No. 8, pp. 1446-1453. https://doi.org/10.1016/j.ijrmms.2008.02.007
  101. Monjezi, M., Bahrami, A. and Varjani, A. Y., 2010a, Simultaneous prediction of fragmentation and flyrock in blasting operation using artificial neural network, International Journal of Rock Mechanics and Mining Sciences (1997), Vol. 47, No. 3, pp. 476-480. https://doi.org/10.1016/j.ijrmms.2009.09.008
  102. Monjezi, M., Ahmadi, M., Sheikhan, M., Bahrami, A. and Salimi, A. R., 2010b, Predicting blast-induced ground vibration using various types of neural networks, Soil Dynamics and Earthquake Engineering, Vol. 30, No. 11, pp. 1233-1236. https://doi.org/10.1016/j.soildyn.2010.05.005
  103. Monjezi, M., Bahrami, A., Varjani, A. Y. and Sayadi, A. R., 2011a, Prediction and controlling of flyrock in blasting operation using artificial neural network, Arabian Journal of Geosciences, Vol. 4, No. 3-4, pp. 421-425. https://doi.org/10.1007/s12517-009-0091-8
  104. Monjezi, M., Ghafurikalajahi, M. and Bahrami, A., 2011b, Prediction of blast-induced ground vibration using artificial neural networks, Tunnelling and Underground Space Technology, Vol. 26, No. 1, pp. 46-50. https://doi.org/10.1016/j.tust.2010.05.002
  105. Monjezi, M., Mohamadi, H. A., Barati, B. and Khandelwal, M., 2012a, Application of soft computing in predicting rock fragmentation to reduce environmental blasting side effects, Arabian Journal of Geosciences, Vol. 7, No. 2, pp. 505-511. https://doi.org/10.1007/s12517-012-0770-8
  106. Monjezi, M., Khoshalan, H. A. and Varjani, A. Y., 2012b, Prediction of flyrock and backbreak in open pit blasting operation: a neurogenetic approach, Arabian Journal of Geosciences, Vol. 5, No. 3, pp. 441-448. https://doi.org/10.1007/s12517-010-0185-3
  107. Monjezi, M., Mehrdanesh, A., Malek, A. and Khandelwal, M., 2013a, Evaluation of effect of blast design parameters on flyrock using artificial neural networks, Neural Computing and Applications, Vol. 23, No. 2, pp. 349-356. https://doi.org/10.1007/s00521-012-0917-2
  108. Monjezi, M., Hasanipanah, M. and Khandelwal, M., 2013b, Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network, Neural Computing and Applications, Vol. 22, No. 7-8, pp. 1637-1643. https://doi.org/10.1007/s00521-012-0856-y
  109. Monjezi, M., Rizi, S. H., Majd, V. J. and Khandelwal, M., 2014, Artificial neural network as a tool for backbreak prediction, Geotechnical and Geological Engineering, Vol. 32, No. 1, pp. 21-30. https://doi.org/10.1007/s10706-013-9686-7
  110. Murlidhar, B. R., Armaghani, D. J., Mohamad, E. T. and Changthan, S., 2018, Rock fragmentation prediction through a new hybrid model based on imperial competitive algorithm and neural network, Smart Construction Research, Vol. 2, No. 1, pp. 1-12.
  111. Nateghi, R., 2011, Prediction of ground vibration level induced by blasting at different rock units, International Journal of Rock Mechanics and Mining Sciences, Vol. 4, No. 6, pp. 899-908. https://doi.org/10.1016/j.ijrmms.2011.04.014
  112. Nguyen, H., 2019a, Support vector regression approach with different kernel functions for predicting blast-induced ground vibration: a case study in an open-pit coal mine of Vietnam, SN Applied Sciences, Vol. 1, No. 4, pp. 1-10. https://doi.org/10.1007/s42452-018-0001-3
  113. Nguyen, H., Bui, X. N., Tran, Q. H., Le, T. Q. and Do, N. H., 2019b, Evaluating and predicting blast-induced ground vibration in open-cast mine using ANN: a case study in Vietnam, SN Applied Sciences, Vol. 1, No. 1, pp. 1-11. https://doi.org/10.1007/s42452-018-0001-3
  114. Omid, M., Ramedani, Z. and Keyhani, A., 2012, Forecasting of daily solar radiation using neuro-fuzzy approach. Proceeding of 5th International Mechanical Engineering Forum, Prague, Czech Republic, pp. 728-740.
  115. Ouchterlony F., 2005, The Swebrec©function: linking fragmentation by blasting and crushing, Mining Technology- Transaction softheInstitutions of Mining and Metallurgy: Section A, Vol. 114, No. 1, pp. 29-44.
  116. Ouchterlony, F., 2016, The case for the median fragment size as a better fragment size descriptor than the mean, Rock Mechanics and Rock Engineering, Vol. 49, No. 1, pp. 143-64. https://doi.org/10.1007/s00603-015-0722-1
  117. Ozkahraman, H. T., 2006, Fragmentation assessment and design of blast pattern at Goltas Limestone Quarry, Turkey, International Journal of Rock Mechanics and Mining Sciences, Vol. 43, No. 4, pp. 628-633. https://doi.org/10.1016/j.ijrmms.2005.09.004
  118. Raina, A. K., Murthy, V. M. S. R. and Soni, A. K., 2014, Flyrock in bench blasting: a comprehensive review, Bulletin of Engineering Geology and the Environment, Vol. 73, No. 4, pp. 1199-1209. https://doi.org/10.1007/s10064-014-0588-6
  119. Rezaei, M., Monjezi, M. and Varjani, A. Y., 2011, Development of a fuzzy model to predict flyrock in surface mining, Safety Science, Vol. 49, No. 2, pp. 298-305. https://doi.org/10.1016/j.ssci.2010.09.004
  120. Rodriguez, R., Torano, J. and Menendez, M., 2007, Prediction of the airblast wave effects near a tunnel advanced by drilling and blasting, Tunnelling and underground space technology Vol. 22, No. 3, pp. 241-251. https://doi.org/10.1016/j.tust.2006.09.001
  121. Rosin, P. and Rammler, E., 1933, The laws governing the fineness of powdered coal, Journal of the Institute of Fuel, Vol. 7, pp. 29-36.
  122. Saadat, M., Khandelwal, M. and Monjezi, M., 2014, An ANN based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, Iran, Journal of Rock Mechanics and Geotechnical Engineering, Vol. 6, No. 1, pp. 67-76. https://doi.org/10.1016/j.jrmge.2013.11.001
  123. Salimi, A. R., Esmaeili, M., Drebenstedt, C. and Dehghani, M. H., 2012, A neuro fuzzy approach for prediction of rock fragmentation in open pit mines, In: Proc. 21th Int. Symp. on Mine Planning & Equipment Selection (MPES), New Delhi, India, pp. 656-666.
  124. Sayadi, A., Monjezi, M., Talebi, N. and Khandelwal, M., 2013, A comparative study on the application of various artificial neural networks to simultaneous prediction of rock fragmentation and backbreak, Journal of Rock Mechanics and Geotechnical Engineering, Vol. 5, No. 4, pp. 318-324. https://doi.org/10.1016/j.jrmge.2013.05.007
  125. Shahin, M. A., Jaksa, M. B. and Maier, H. A., 2008, State of the art of artificial neural networks in geotechnical engineering, Electronic Journal of Geotechnical Engineering, Vol. 8, No. 1, pp. 1-26.
  126. Shams, S., Monjezi, M., Majd, V. J., and Armaghani, D. J., 2015, Application of fuzzy inference system for prediction of rock fragmentation induced by blasting, Arabian Journal of Geosciences, Vol. 8, No. 12, pp. 10819-10832. https://doi.org/10.1007/s12517-015-1952-y
  127. Shang, Y., Nguyen, H., Bui, X. N., Tran, Q. H. and Moayedi, H., 2019, A novel artificial intelligence approach to predict blast-induced ground vibration in open-pit mines based on the firefly algorithm and artificial neural network, pp. 1-15.
  128. Shi, X. Z., Zhou, J., Wu, B. B., Huang, D. and Wei, W., 2012, Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction, Transactions of Nonferrous Metals Society of China, Vol. 22, No. 2, pp. 432-441. https://doi.org/10.1016/S1003-6326(11)61195-3
  129. Singh, S. P., Narendrula, R. and Duffy, D., 2005, Influence of blasted muck on the productivity of the loading equipment, Proceedings of the 3rd EFEE Conference on Explosives and Blasting, pp. 347-353.
  130. Singh, S. P. and Narendrula, R., 2009, Causes, implications and control of oversize during blasting. Proceedings of the 9th International Symposium on Rock Fragmentation by Blasting, pp. 311-317.
  131. Singh, T. N., Dontha, L. K. and Bhardwaj, V., 2008, Study into blast vibration and frequency using ANFIS and MVRA, Transactions of the Institution of Mining and Metallurgy, Section A: Mining Technology, Vol. 117, No. 3, pp. 116-121.
  132. Singh, T. N., Jadhav, V. B. and Singh, S., 2009, A fuzzy approach to classify physico-mechanical rock property with varying pH of the surrounding medium, Environmental Geology, Vol. 56, No. 7, pp. 1383-1387. https://doi.org/10.1007/s00254-008-1233-0
  133. Stojadinovic, S., Pantovic, R. and Zikic, M., 2011, Prediction of flyrock trajectories for forensic applications using ballistic flight equations, International Journal of Rock Mechanics and Mining Sciences, Vol. 48, No. 7, pp. 1086-1094. https://doi.org/10.1016/j.ijrmms.2011.07.004
  134. Szemis, J. M., Maier, H. R. and Dandy, G. C., 2012, A framework for using ant colony optimization to schedule environmental flow management alternatives for rivers, wetlands and floodplains, Water Resources Research, Vol. 48, No. 8,
  135. Torano, J. and Rodriguez, R., 2003, Simulation of the vibration produced during the rock excavation by different methods, WIT Transactions on Modelling and Simulation, WIT Press, Vol. 33, No. 8, pp. 343-349.
  136. Trivedi, R., Singh, T. N. and Gupta, N., 2015, Prediction of blast-induced flyrock in opencast mines using ANN and ANFIS, Geotechnical and Geological Engineering, Vol. 33, No. 4, pp. 875-891. https://doi.org/10.1007/s10706-015-9869-5
  137. Trivedi, R., Singh T. N. and Raina, A. K., 2014, Prediction of blast induced flyrock in Indian limestone mines using neural networks, Journal of Rock Mechanics and Geotechnical Engineering, Vol. 6, No. 5, pp. 447-454. https://doi.org/10.1016/j.jrmge.2014.07.003
  138. Verkis, H. and Lobb, T., 2007, Flyrock revisited: an ever-present danger in mine blasting, Proceedings of the Annual Conference on Explosives and Blasting Technique, Vol. 33, No. 1, pp. 87.
  139. Verkis, H., 2011, Flyrock: a continuing blast safety threat, Proceeding of the thirty-seventh Annual Conference on Explosives and Blasting Technique, ISEE, San Diego, CA, USA, pp. 731-739.
  140. Wang, H., Zheng, B., Yoon, S. W. and Ko, H. S., 2018, A support vector machine-based ensemble algorithm for breast cancer diagnosis, European Journal of Operational Research, Vol. 267, No. 2, pp. 687-699. https://doi.org/10.1016/j.ejor.2017.12.001
  141. Wu, Y. K., Hao, H., Zhou, Y. X. and Chong, K., 1998, Propagation characteristics of blast induced shock waves in a jointed rock mass, Soil Dynamics and Earthquake Engineering, Vol. 17, No. 6, pp. 407-412. https://doi.org/10.1016/S0267-7261(98)00030-X
  142. Yang, Y. and Zhang, Q., 1997, A hierarchical analysis for rock engineering using artificial neural networks, Rock mechanics and rock engineering, Vol. 30, No. 4, pp. 207-222. https://doi.org/10.1007/BF01045717
  143. Zhang, Q., Jiarong, S. and Xiaoyan, N., 1991, Application of neural network models to rock mechanics and rock engineering, International journal of rock mechanics and mining sciences & geomechanics abstracts, Vol. 28, No. 6, pp. 535-540. https://doi.org/10.1016/0148-9062(91)91130-J