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MATHEMATICAL MODELLING FOR THE AXIALLY

MOVING PLATE WITH INTERNAL TIME DELAY

Daewook Kim

Abstract. In [1, 2], we studied the string-like system with time-varying

delay. Unlike the string system, the plate system must consider both
longitudinal and transverse strains. First, we consider the physical phe-

nomenon of an axially moving plate concerning kinetic energy, potential

energy, and work dones. By the energy conservation law in physics, we
have a nonlinear plate-like system with internal time delay.

1. Introduction

Many string-like systems induced the mathematical modeling are studied
on mathematical fields (See [1, 3, 4, 5, 7]). In the string-like system, the main
equation is only expressed in a single form because the longitudinal displacement
is minimal. We intend to mathematically model a system that considers both
transverse and longitudinal strains. That is ‘plate.’ In this work, we focus on
the axially moving plate.

Similar to [2], we focus on the time variable relating to the damping term. It
is related to the energy generated from the boundary inward when the boundary
moves. The energy generated at this time is non-conservative work done WDnc.
In case of the work done defined by the non conservative forces f(x, t) in internal
of domain and fc(t) at the boundary x = l(t). In the free boundary, the axially
moving plate may slip. Therefore, it is necessary to define a different time. It
is necessary to express the time differently from normal time t. I will express it
in τ here. An also, work done on the outward direction at the right boundary
that is free is WDrb. Therefore, WD = WDnc + WDrb on the near the right
boundary. Note that work done on the fixed boundary x = 0 is zero.

The internal time delay inside the system occurs due to interference (actually
caused by the influence of both longitudinal and transverse strain of the plate) or
time difference between the fixed roller and the moving roller. This phenomenon
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reduces the product’s value by preventing the scroll of the system from being
wound constantly. So, it is necessary to control the time delay phenomenon.

Our purpose in this work derives a plate-like model with internal time delay.
The plate-like model considering the longitudinal direction and the transverse
direction is derived from the coupled equation considering the two displace-
ments. It is significant for modeling industrial sites such as steel plate produc-
tion. In addition, the partial differential equation derived in this way is helpful
for research extending to the third-order or higher.

This work is organized into some processes. First, we check some needed
physical variables. Using the variables, we consider the kinetic energy, potential
energy, and work done in great detail. Next, we consider the variation for energy.
Using the energy conservation and the variation lemma, Hamilton’s principle,
integration by parts, we get the initial-boundary problem for nonlinear third-
order PDE.

2. Mathematical modelling

The plate on the mass production process is steered axially through two ends,
which are spaced apart by a distance of l(t). The membrane has two variables.
r, s is the displacement of plate under the variables. The first variable is the
spatial part x. The range of x is 0 ≤ x ≤ l(t). Indeed, we consider suitable
time t of l(t) is fixed. It is a part of the plate-like process. More delicately,
the part is roller to roller of the axially moving plate. In the case of the first
boundary x = 0, physically, the roller’s shaft (r(0, t) and s(0, t)) is fixed. In
the other case l(t), of the roller’s transversal shaft (s(1, t)) is mechanically free.
But longitudinal shaft (r(0, t)) is fixed. The next variable is time t Over time,
the string moves in a high-speed moving axial direction. At this time, a slip
phenomenon occurs in the inner area with the right border l(t). For applying
the variation Lemma, we set the variations. The variation of s and r is φ and
ψ, respectively. Some variables and constants that will be used in this paper
are as follows:
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v > 0 : moving speed for axial direction;
r : logitudinal displacement of the plate moving;
s : transversal displacement of the plate moving;
(·)t = ∂(·)/∂t : the partial derivative for time;
(·)x = ∂(·)/∂x : the partial derivative for domain value;
i, j : the standard basis vectors;
{v + vrx + rt}i+ {vsx + st}j : transversal velocity of the plate moving;
C(x) : the area of cross-section;
$(x) : mass per unit(weight);
Y : Young’s elastic modulus;
σ(x, t) : tensile stress;
ζ(x, t) : strain;
ι0 : initial tension of plate.

We also define certain energies and vibrations physically. K is kinetic energy.
P is potential energy. δWDnc is the variation of non-conservative work done.
δWDrb is the variation of work done at the right boundary. More specifically,
all of them are given by

K =
1

2

∫ l(t)

0

$(x)C(x)[{v + vrx + rt}2 + {vsx + st}2]dx, (1)

P =

∫ l(t)

0

[(
ι0 +

Y C(x)

4

∫ 1

0

(
∂s

∂x

)2

dx

)
(2)

+
1

2
C(x)σ(x, t)ζ(x, t)

]
ζ(x, t)dx,

δWDnc =

∫ l(t)

0

[
ψ(x, t)− $(x)v

2
st(x, t− τ)

]
δs(x, t)dx (3)

+ψc(t)δs(l(t), t),

δWDrb = $(l(t))C(l(t))v(vsx(l(t), t) + st(l(t), t))δs(l(t), t). (4)

Now,we calculate the potential energy P in more detail. Let Z and ζ(x, t) =
dy−dx

dx (,where |dx| = 1) be the plate’s tension and the strain under physical
situations, respectively.

Then, we have

P =

∫ l(t)

0

Zζ(x, t)dx

=

∫ l(t)

0

[
σ(ε(x, t)) +

σ′(ε(x, t))

2

∫ l(t)

0

(
∂s

∂x

)2

dx

]
ζ(x, t)dx.



622 D. KIM

Next we set σ(ε(x, t)) = ι0 + Y C(x)
2 ζ(x, t)ε(x, t) with ι0. Therefore the potential

energy P changes

P =

∫ l(t)

0

[
ι0 +

Y C(x)

2
ζ(x, t)ε(x, t) +

Y C(x)

4

∫ l(t)

0

(
∂s

∂x

)2

dx

]
ζ(x, t)dx.

Because of σ(ε(x, t)) which is defined by σ(x, t), we can apply σ(ε(x, t)) =
Y ε(x, t). So, we finally get

P =

∫ l(t)

0

[(
ι0 +

Y C(x)

4

∫ 1

0

(
∂s

∂x

)2

dx

)
+

1

2
C(x)ζ(x, t)σ(x, t)

]
ζ(x, t)dx.

By the Taylor’s theorem, we get the strain

ζ(x, t) =

[{
dx+ ∂r

∂xdx
}2

+
{

∂s
∂xdx

}2] 1
2 − dx

dx

=

[
1 + 2

∂r

∂x
+

{
∂r

∂x

}2

+
1

2

∂r

∂x

{
∂s

∂x

}2

+
1

4

{
∂s

∂x

}4

+ · · ·

] 1
2

− 1

≈ ∂r

∂x
+

1

2

(
∂s

∂x

)2

� 1

So, we approximately have

P =

∫ l(t)

0

[(
ι0 +

Y C(x)

4

∫ l(t)

0

(
∂s

∂x

)2

dx

)(
∂r

∂x
+

1

2

{
∂s

∂x

}2
)

+
1

2
C(x)σ(x, t)

(
∂r

∂x
+

1

2

{
∂s

∂x

}2
)2
 dx.

From now on, we start calculating the variation between kinetic and potential
energy. By using the Gâteatux derivative, we get variations of K and P like as:

δK(r;ψ, s;φ) = lim
ε→0

K(r + εψ, s+ εφ)−K(r, s)

ε

=

∫ l(t)

0

$(x)C(x) [v(v + vrx + rt)ψx + (v + vrx + rt)ψt

+v(vsx + st)φx + (vsx + st)φt] dx,

(5)
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δP (r;ψ, s;φ) = lim
ε→0

P (r + εψ, s+ εφ)− P (r, s)

ε

=

∫ l(t)

0

(
ι0 +

Y C(x)

4

∫ l(t)

0

(
∂s

∂x

)2

dx

)
[ψx + sxφx] dx

+

∫ l(t)

0

C(x)σ(x, t)

[(
rx +

1

2
sx

)
ψx +

(
rx +

1

2
sx

)
sxφx

]
dx,

(6)

where φ is the C1 function which depends on x and t.
Apply for the Hamilton’s Principle, (3)-(4) and (5)-(6) are as follows:

∫ t1

t0

(δK − δP + δWDnc − δWDrb)dt = 0, for all t ∈ [t0, t1] (7)

Accordingly, (7) can be replaced with

∫ tl

t0

∫ l(t)

0

$(x)C(x) [v(v + vrx + rt)ψx + (v + vrx + rt)ψt

+v(vsx + st)φx + (vsx + st)φt] dxdt

+

∫ tl

t0

∫ l(t)

0

(
ι0 +

Y C(x)

4

∫ l(t)

0

(
∂s

∂x

)2

dx

)
[ψx + sxφx] dxdt

+

∫ tl

t0

∫ l(t)

0

C(x)σ(x, t)

[(
rx +

1

2
sx

)
ψx +

(
rx +

1

2
sx

)
sxφx

]
dxdt

+

∫ tl

t0

∫ l(t)

0

[
ψ(x, t)− $(x)v

2
st(x, t− τ)

]
φdxdt

+

∫ tl

t0

[Fc(t)φ(l(t), t)−$(l(t))C(l(t))v(vsx(l(t), t) + st(l(t), t))φ(l(t), t)] dt = 0

(8)
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By using the integration by parts, we deduce

∫ t1

t0

[
$(l(t))C(l(t))(v2 + v2sx(l(t), t) + vst(l(t), t))

− 1

2

(
ι0 +

Y C(l(t))

4

∫ l(t)

0

(
∂s

∂x

)2

dx

)

+C(l(t))σ(l(t), t)

(
rx(l(t), t) +

1

2
s2x(l(t), t)

)]
ψ(l(t), t)dt

+

∫ t1

t0

[
$(0)C(0)(v2 + v2sx(0, t) + vst(0, t))

− ι0
2

+ C(0)σ(0, t)

(
rx(0, t) +

1

2
s2x(0, t)

)]
ψ(0, t)dt

+

∫ t1

t0

[
Fc(t)−

1

2

{(
ι0 +

Y C(l(t))

4

∫ l(t)

0

(
∂s

∂x

)2

dx

)
+$(l(t))C(l(t))

}
sx(l(t), t)

−$(l(t))C(l(t)) + C(x)σ(x, t)

(
rx(l(t), t) +

1

2
s2x(l(t), t)

)]
ψ(l(t), t)dt

−
∫ t1

t0

[
$(0)C(0)(v2sx(0, t) + vst(0, t))

− ι0
2

+ C(0)σ(0, t)

(
rx(0, t) +

1

2
s2x(0, t)

)]
φ(0, t)dt

+

∫ l(t)

0

$(x)C(x)(vsxt(x, t1) + stt(x, t1))φ(x, t1)dx

+

∫ l(t)

0

$(x)C(x)(vsxt(x, t0) + stt(x, t0))φ(x, t0)dx

+

∫ l(t)

0

$(x)C(x)(vrxt(x, t1) + rtt(x, t1))ψ(x, t1)dx

+

∫ l(t)

0

$(x)C(x)(vrxt(x, t0) + rtt(x, t0))ψ(x, t0)dx

−
∫ t1

t0

∫ l(t)

0

[{
$(x)C(x)

(
v2rxx + 2vrxt − rtt

)
− C(x)σ(x, t)

(
rx +

1

2
s2x

)
x

}
ψ(x, t)

+

{
$(x)C(x)

(
v2 − 1

$(x)C(x)

(
ι0 +

Y C(l(t))

4

∫ l(t)

0

(
∂s

∂x

)2

dx

)
sxx + 2vsxt + stt

)

−$(x)C(x)

{
sx

(
rx +

1

2
s2x

)}
x

−
[
ψ(x, t)− $(x)v

2
st(x, t− τ)

]}
φ(x, t)

]
dxdt = 0.
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Applying the variational lemma, finally we get the following coupled system
considering internal time delay

$(x)

σ(x, t)

(
v2rxx + 2vrxt − rtt

)
=

(
rx +

1

2
s2x

)
x

in (0, l(t))× (0, T ),

(9)

v2 − 1

$(x)C(x)

(
ι0 +

Y C(l(t))

4

∫ l(t)

0

(
∂s

∂x

)2

dx

)
sxx + 2vsxt + stt

− 1

$(x)C(x)

[
ψ(x, t)− $(x)v

2
st(x, t− τ)

]
=

{
sx

(
rx +

1

2
s2x

)}
x

in (0, l(t))× (0, T ),

(10)

the boundary conditions on (0, T ), as

Fc(t)−
1

2

{(
ι0 +

Y C(l(t))

4

∫ l(t)

0

(
∂s

∂x

)2

dx

)
+$(l(t))C(l(t))

}
sx(l(t), t)

=$(l(t))C(l(t))− C(x)σ(x, t)

(
rx(l(t), t) +

1

2
s2x(l(t), t)

)
r(0, t) = r(l(t), t) = s(0, t) = 0 (11)

and the initial conditions as

s(x, 0) = s0(x)

st(x, 0) = sl(x)

r(x, 0) = r0(x) (12)

rt(x, 0) = rl(x)

in (0, l(t)).

3. Conclusion

The mathematical analysis of the coupled system (9)-(12) is significant in
the field of partial differential equations. The derivation of the axially moving
plate-like equation to modeling can actually be extended to the Timoshenko
beam equation. (See [10]) To control the time internal delay, a mathematical
analysis of the optimal control system associated with time delay is required for
free boundary terms (the first equation in (11)) as future works.
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