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JACOBIAN VARIETIES OF HYPERELLIPTIC CURVES OVER

FINITE FIELDS WITH THE FORMAL STRUCTURE OF THE

MIXED TYPE

Gyoyong Sohn

Abstract. This paper consider the Jacobian variety of a hyperelliptic

curve over a finite field with the formal structure of the mixed type. We
present the Newton polygon of the characteristic polynomial of the Frobe-

nius endomorphism of the Jacobian variety. It gives an useful tool for

finding the local decomposition of the Jacobian variety into isotypic com-
ponents.

1. Introduction

There are several invariants associated with abelian varieties such as the p-
rank, the Newton polygon, and the Ekedahl-Oort type. These invariants give
information about the Frobenius morphism and the number of points of the
abelian variety defined over finite fields. The study of invariants on hyperelliptic
curves over finite fields has been studied by numerous researchers (e.g., [2, 3]
and [4]). Based on the Newton polygon of the characteristic polynomial of the
Frobenius endomorphism of the Jacobian variety, Yui gaves a classification of
the Jacobian variety of a hyperelliptic curve over a field with characteristic p > 0
in [5]. In this paper, we consider the Jacobian variety of a hyperelliptic curve
over a finite field with the formal sturcture of the mixed type. The formal group
of the Jacobian vareity is the connected component of the p-divisible gorup of
the Jacobian vareity.

Let Fq be a finite field with q = pn elements for prime p > 2. Let C be
a hyperelliptic curve of genus g defined over Fq and JC denote its Jacobian
variety. Let Mr = ]C(Fqr ) be the number of points of C defined over Fqr , for
r ≥ 1. The zeta function of C is

Z(C/Fq, t) = exp
( ∞∑
r=1

Mrt
r/r
)
.
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By the Weil conjectures for curves [6, 7], the zeta function Z(C/Fq, t) can be
written as

Z(C/Fq, t) =
L(C/Fq, t)

(1− t)(1− qt)
,

where L(C/Fq, t) is the L-polynomial of C. Let l be a prime number l 6= q. Let
Zl be the ring of l-adic ingeters, and Ql its quotient field. Let Tl(JC) be the l-th
Tate module of JC , and Vl(JC) = Tl(JC) ⊗Zl Ql be the corresponding vector
space over Ql. Then Tl(A) is a free Zl-module of rank 2g. The characteristic
polynomial of the Frobenious endomorphism πJC of JC is defined as

P (JC/Fq, t) = det(πJC − tId | Vl(JC)).

Then P (JC/Fq, t) = t2gL(C/Fq, t). Furthermore, L(C/Fq, t) is factored as

L(C/Fq, t) =

g∏
i=1

(1− αit)(1− αit),

where each αi is a complex number of absolute value
√
q and αi denotes the

complex conjugate of αi. Moreover, P (JC/Fq, t) is a monic polynomial of degree
2g with rational integer coefficients of the form

P (JC/Fq, t) = t2g + a1t
2g−1 + · · ·+ agt

g + qag−1t
g−1 + · · ·+ qg−1a1t+ qg

(1)

for all ai ∈ Z, 1 ≤ i ≤ g. For simplicity, we write P (t) instead of P (JC/Fq, t).

Remark 1. Let vp be the p-adic valuation of Qp and let νp denote the unique

extension of the p-adic valuation vp to the algebraic closure Qp of Qp, normalized

so that νp(p) = 1. The Newton polygon of P (t) =
∑2g
i=0 ait

i ∈ Z[t] over Qp is
the lower envelope of the set of the points {(i, vp(ai)|0 ≤ i ≤ 2g} in R× R.

2. Cartier-Manin matrix

In this section, we recall the definition of the Cartier-Manin matrix in the
case of hyperelliptic curves. Let K = Fq(C) be a function field of C of one
variable over Fq and let Kp denote the subfield of p-th powers. Let ΩK be
the space of all differential forms of degree 1 on K and let x be a separably
generating transcendental element in K\Kp. Then every differential ω ∈ ΩK
can be written uniquely as

ω = dλ+ apxp−1dx

with λ, a ∈ K, ap ∈ Kp. The (modified) Cartier operator C : ΩK → ΩK is
defined as C(ω) = adx.

Let ω=(ω1, . . . , ωg) be a basis of Ω0
K . Then there are g× g matrix A = (aij)

with coefficients in Fq such that

C(ω) = A(1/p)ω,
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where A1/p denotes a
1/p
ij . The matrix A is called the Cartier-Manin matrix of

the hyperelliptic curve C.
In [1], Manin showed that this matrix is related to the characteristic polyno-

mial of the Frobenius endomorphism πJC modulo p. Then, we have the following
theorem.

Theorem 2.1. Let C be a curve of genus g defined over a finite field Fpn . Let A

be the Cartier-Manin matrix of C and let Aπ = A ·Ap ·Ap2 · · ·Apn−1

. Let κ(t)
be the characteristic polynomial of the matrix Aπ and χ(t) the characteristic
polynomial of the Frobenius endomorphism of JC . Then, we have

χ(t) ≡ (−1)gtgκ(t) (mod p).

Proof. See [1]. �

Note that this theorem provides a very efficient method to compute the
characteristic polynomial of the Frobenius endomorphism and the group order
of the Jacobian of C modulo p.

3. Jacobian variety of C

In this section, we present the Newton polygon of the characteristic polyno-
mial of the Frobenius endomorphism of JC with formal structure of the mixed
type.

In [5], Yui gave a complete characterization of the ordinary Jacobian variety
JC of C whose Cartier-Manin matrix has determinant zero in Fq. In the case
of determinant |A| = 0, there are useful results to determines the algebraic
structure of Jacobian variety JC of C. Now we discuss the Jacobian variety JC
of C whose A has determinat zero in Fq.

Theorem 3.1. Suppose that the Cartier-Manin matrix A of C has the determi-

nant |A| = 0 in Fq and the matrix Aπ = AA(p) · · ·A(pn−1) has rank 0. Then the

characteristic polynomial P (t) has the p-adic decomposition P (t) =
∏2g
i=1(t−αi)

with 0 < νp(αi) < n.

Theroem 3.1 gives a decomposition of P (t) over Qp. Then we can factor P (t)
into the form

P (t) =

2s∏
i=1
νp(αi)=n/2

(t− αi)
r∏

i=1,
νp(αi)=0

(t− αi)(t− αi)
g−s−r∏

i=1,
0<νp(αi)<n/2

(t− αi)(t− αi),

(2)

where 2s (resp. r) the number of the p-adic roots αi of P (t) with vp(αi) = n/2
(resp. 0) and αi = pn/αi. There are the algebraic structure of Jacobian variety
JC up to isogeny, in the cases [s = g, r = 0], [s = 0, r = 0], and [0 < s <
g, 0 < r < g], respectively. Now, we consider the Jacobian variety with the
characteristic polynomial in the case [s = 0, r = l] for some integer l.
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Theorem 3.2. [5] Suppose that the Cartier-Manin matrix A of C has the de-

terminant |A| = 0 in Fq and the matrix Aπ = AA(p) · · ·A(pn−1) has rank 0. The
following statements are equivalent :
(a) P (t) =

∏g
i=1(t−αi)(t−αi) with αi simple roots, and νp(αi) = nλ, 0 < λ < 1

2
for every 1 ≤ i ≤ g,
(b) P (t) =

∑2g
i=0 ait

i is a distinguished polynomial over Zp and the coefficients
ai satisfy the condition:

min
0≤i≤2g

vp(ai)

in
=
vp(ag)

gn
= λ =

µλ
µλ + ωλ

,

where µλ, ωλ are positive integers such that 1 ≤ µλ < ωλ, (µλ, ωλ) = 1, and
µλ + ωλ = g.

Proof. See [5]. �

Now we consider the characteristic polynomila P (t) of JC with degree g − l
for positive integers l with 1 ≤ l ≤ g − 3.

Lemma 3.3. Suppose that the Cartier-Manin matrix A of C has the determi-

nant |A| = 0 in Fq and the matrix Aπ = AA(p) · · ·A(pn−1) has rank 0. For

positive interger l with 0 ≤ l ≤ g − 3, let P (t) =
∏g−l
i=1(t − αi)(t − αi) with

αi complex numbers, and νp(αi) = nλ, 0 < λ < 1
2 for 1 ≤ i ≤ g − l. Let

P (t) =
∑2(g−l)
i=0 ait

i is a polynomial over Zp. Then we have the coefficients ai
satisfy the condition:

vp(ag−l) = (g − l)nλ and vp(a(g−l−i)) ≥ (g − l − i)nλ
where µλ, ωλ are positive integers such that 1 ≤ µλ < ωλ, (µλ, ωλ) = 1, and
µλ + ωλ = g − l, and λ = µλ

νλ+ωλ
.

Proof. Suppose that the characteristic polynomial P (t) has the following form

: P (t) =
∏g−l
i=1(t− αi)(t− αi) with νp(αi) = λn, 0 < λ < 1

2 for 1 ≤ i ≤ g− l. It
is the case of s = 0 and r = 0 in (2). Put αi = αg−l+i for 1 ≤ i ≤ g − l. Then
we have νp(αi) = λn, νp(αg−l+i) = (1 − λ)n for 1 ≤ i ≤ g − l, from which we
have that vp(a0) = 0, vp(ai) ≥ λin for every 1 ≤ i ≤ g− l, vp(ag−l) = λ(g− l)n,
and vp(ag−l+i) ≥ λ(g − l)n+ (1− λ)in for 1 ≤ i ≤ g − l. Hence it follows that

vp(ai)

in
≥ λ, vp(ag−l)

(g − l)n
= λ, and

vp(ag−l+i)

(g − l + i)n
≥ λ.

Therefore, we get

min
0≤i≤2(g−l)

vp(ai)

in
=
vp(ag−l)

(g − l)n
= λ.

Now put µλ = λ(g − l) and ωλ = g − l − µλ = (1− λ)(g − l). Then µλ, ωλ are
positive integers satisfying 1 ≤ µλ < ωλ, µλ + ωλ = g − l, (µλ, ωλ) = 1, and
λ = µλ/(µλ + ωλ). �

Our main result is the following theorem.
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Theorem 3.4. Suppose that the Cartier-Manin matrix A of C has the deter-
minant |A| = 0. The following statements are equivalent :
(a) If the characteristic polynomial P (t) of Jacobian vareity JC is decomposed

into the product P1(t) and P2(t), where P1(t) =
∏2l
i=1(t−αi) with νp(αi) = n/2

for positive integer l, 1 ≤ l ≤ g − 3 and P2(t) =
∏g−l
i=1(t − αi)(t − αi) with

νp(αi) = λn for 0 < λ < 1/2.

(b) The arbitary polynomial over Zp denote P (t) =
∑2g
i=0 ait

i and the coeffi-
cients ai satisfy the condition:

vp(a(g−l)+i) ≥
(
µλ +

i

2

)
n

for 1 ≤ i ≤ l, and

vp(ag−l) = (g − l)nλ and vp(ag−l−j) ≥ (g − l − j)nλ
for 1 ≤ j ≤ g−l−1 where λ, µλ, ωλ are positive integers satisfying 1 ≤ µλ < ωλ,
(µλ, ωλ) = 1, µλ + ωλ = g − l and λ = µλ

µλ+ωλ
.

Proof. Assume (a). Then P (t) = P1(t)P2(t) has the form

P (t) =

2l∏
i=1
νp(αi)=n/2

(t− αi)
g−l∏

i=1,
0<νp(αi)<n/2

(t− αi)(t− αi),(3)

for positive integer l, 1 ≤ l < g− 3. Let P1(t) =
∑2l
i=1 bit

i be a polynomial over
Zp. Then we have vp(bi) = in/2 for every 0 ≤ i ≤ 2l.

Let P2(t) =
∑g−l
i=1 dit

i be a polynomial over Zp. Note that we can find
positive integers λ, µλ, ωλ such that 1 ≤ µλ < ωλ, (µλ, ωλ) = 1, µλ + ωλ =
g − l and λ = µλ

µλ+ωλ
. By Lemma 3.3, we have vp(dg−1) = (g − l)nλ and

vp(dg−l−i) ≥ (g − l − i)nλ. Now the factorization P (t) = P1(t)P2(t) gives

vp(ag−l) =
∑g−l
i=1,νp(αi)=λn

νp(αi) = (g− l)nλ, vp(a(g−l)+i) ≥ λ(g− l)n+ in/2 =

(µλ+i/2)n for 1 ≤ i ≤ 2l, and vp(ag−l−j) ≥ (g−l−j)nλ for 1 ≤ j ≤ g−l−1. �

Theorem 3.5. If the characteristic polynomial P (t) of the Jacobian vareity JC
of C has the form (3), then the Newton polygon of P (t) has the segments L1,
L2, L3 from the right with slopes −λn, −n/2 and −(1− λ)n, respectively. The
Newton polygon of P (t) is represented in Figure 1.

Proof. By the Theorem 3.4, the Newton polygon has the segments Li, 1 ≤
i ≤ 3 with line equations y = −λnx + 2gλn, y = −n2x + ( g+l2 + µλ)n and
y = −(1− λ)nx+ ng respectively. �
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Figure 1.
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Progr. math.,89, birkhäuser Boston, Boston, MA, (1991), 247–284.

[3] R. Pries, The p-torsion of curves with large p-rank, Int. J. Number Theory 5 (2009), no.

6, 1103–1116.
[4] J. Scholten and H. J. Zhu, Hyperelliptic curves in characteristic 2, Int. Math. Res. Not.

(2002), no. 17, 905-917.

[5] N. Yui, On the Jacobian Varieties of Hyperelliptic Curves over Fields of Characteristic
p > 2, Journal of Algebra 52 (1978), no. 2, 378–410.
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