DOI QR코드

DOI QR Code

Long-range multiple-input-multiple-output underwater communication in deep water

심해에서의 장거리 다중입출력 수중통신

  • Received : 2021.07.05
  • Accepted : 2021.08.04
  • Published : 2021.09.30

Abstract

Long-range communication in deep waters must overcome the low data rate due to limited bandwidth. This paper presents the performance of Multiple-Input-Multiple-Output (MIMO) system to increase the data rate. In MIMO system, communication performance is degraded by crosstalk between users and an adaptive passive Time Reversal Processing (TRP) is widely used to eliminate this. In October 2018, long-range underwater acoustic communication experiment was conducted in deep water (1,000 m ~) off the east of Pohang, South Korea. During the experiment, a vertical line array was utilized and communication signals modulated by binary phase shift keying and quadrature phase shift keying with a symbol rate of 512 sps were transmitted. To generate MIMO communication signals, received signals from ranges of 26 km and 30 km is synthesized. Compared to the conventional passive TRP, the adaptive passive TRP eliminates the crosstalk between users and achieves error-free performance with an increase of output signal-to-noise ratio. Therefore, two users separated by 4 km in range achieves an aggregate data rate of 1,024 symbols/s.

심해 장거리 통신의 경우, 제한된 대역폭으로 인해 데이터 전송률이 낮아지는 한계가 있다. 본 논문에서는 데이터 전송률을 향상시킬 수 있는 방법인 다중입출력 수중통신 연구 결과를 제시한다. 단일 음원 환경과 달리 다중음원 환경의 경우 다른 음원에 의한 간섭으로 통신 성능이 저하되며, 이를 제거하기 위해 적응형 수동 시역전 처리가 주로 사용되고 있다. 2018년 10월 포항 동방 수심 1,000 m 이상의 심해 해역에서 장거리 수중음향통신 해상실험이 수행되었다. 해상실험 동안 수직 선 배열이 활용되었으며, 512 sps의 binary phase shift keying와 quadrature phase shift keying 변조 신호가 송신되었다. 다중입출력 환경을 모사하기 위해 26 km와 30 km 거리의 데이터를 합성한다. 재래식과 적응형 수동 시역전 처리를 이용한 데이터 분석 및 비교를 통해, 적응형 신호 처리를 적용했을 때 다른 음원에 의한 간섭이 제거되어 0 %의 비트 오류율과 출력 신호 대 잡음비 증가의 효과를 확인하였다. 따라서 두 개의 음원을 가진 다중입출력 통신 성능 분석을 통해 두 배의 데이터 전송률 (1,024 sps)을 획득하였다.

Keywords

Acknowledgement

This work was supported by the Agency for Defense Development, South Korea, under Grant UD200010DD and Low frequency Underwater Research Laboratory.

References

  1. F. Akyildiz, D. Pompili, and T. Melodia, "Challenges for efficient communication in underwater acoustic sensor networks," ACM Sigbed Review, 1, 3-8 (2004).
  2. M. Stojanovic, J. Catipovic, and J. G. Proakis, Acoustic Signal Processing for Ocean Exploration (Springer, Dordrecht, 1993), pp. 607-612.
  3. M. Stojanovic, J. Catipovic, and J . G. Proakis, "Adaptive multichannel combining and equalization for underwater acoustic communications," J. Acoust. Soc. Am. 94, 1621-1631 (1993). https://doi.org/10.1121/1.408135
  4. A. Plaisant, "Long range acoustic communications," Proc. IEEE OCEANS'98 Conf. 1 (1998).
  5. T. Shimura, Y. Watanabe, H. Ochi, and T. Hattori, "Basic at-sea experiment for long horizontal time-reversal communication in deep ocean," Proc. Acoustics' 08, 10375-10380 (2008).
  6. H. C. Song, W. A. Kuperman, and W. S. Hodgkiss, "Basin-scale time reversal communications," J. Acoust. Soc. Am. 125, 212-217 (2009). https://doi.org/10.1121/1.3021435
  7. H. C. Song and M. Dzieciuch, "Feasibility of global-scale synthetic aperture communications," J. Acoust. Soc. Am. 125, 8-10 (2009). https://doi.org/10.1121/1.3035830
  8. T. Shimura, H. Ochi, Y. Watanabe, and T. Hatton, "Experiment results of time-reversal communication at the range of 300 km," Jpn. J. Appl. Phys. 49, 07HG11 (2010).
  9. H. C. Song, S. Cho, T. Kang, W. S. Hodgkiss, and J. R. Preston, "Long-range acoustic communication in deep water using a towed array," J. Acoust. Soc. Am. 129, EL71-EL75 (2011). https://doi.org/10.1121/1.3554707
  10. T. Shimura, H. Ochi, and Y. Watanabe, "Time - reversal communication in deep ocean - results of recent experiments," Proc. 2011 IEEE Symposium on Underwater Technology and Workshop on Scienfitic Use of Submarine Cables and Related Technologies, 1-5 (2011).
  11. H. C. Song, "Acoustic communication in deep water exploiting multiple beams with a horizontal array," J. Acoust. Soc. Am. 132, EL81-EL87 (2012). https://doi.org/10.1121/1.4734242
  12. H. C. Song and W. S. Hodgkiss, "Diversity combining for long-range acoustic communication in deep water," J. Acoust. Soc. Am. 132, EL68-EL73 (2012). https://doi.org/10.1121/1.4731639
  13. T. Kang, H. C. Song, and W. S. Hodgkiss, "Long-range multi-carrier acoustic communication in deep water using a towed horizontal array," J. Acoust. Soc. Am. 131, 4665-4671 (2012). https://doi.org/10.1121/1.4711009
  14. T. Shimura, Y. Watanabe, H. Ochi, and H. C. Song, "Long-range time reversal communication in deep water : Experimental results," J. Acoust. Soc. Am. 132, EL49-EL53 (2012). https://doi.org/10.1121/1.4730038
  15. T. Shimura, H. Ochi, and H. C. Song, "Experimental demonstration of multiuser communication in deep water using time reversal," J. Acoust. Soc. Am. 134, 3223-3229 (2013). https://doi.org/10.1121/1.4818839
  16. Z. Liu. K. Yoo, T. C. Yang, S. E. Cho, H. C. Song, and D. E. Ensberg "Long-range double-differentially coded spread-spectrum acoustic communications with a towed array," IEEE J. Ocean Eng. 39, 482-490 (2014). https://doi.org/10.1109/JOE.2013.2264994
  17. J. Lee, H. Lee, K. Kim, and W. Kim, "Sea trial results of long range underwater acoustic communication based on frequency modulation in the East Sea" (in Korean), J. Acoust. Soc. Kr. 38, 371-377 (2019).
  18. H. S. Kim, S. H. Kim, J. W. Choi, and H. S. Bae, "Bidirectional equalization based on error propagation detection in long-range underwater acoustic communication," Jpn. J. Appl. Phys. 58, SGGF01 (2019). https://doi.org/10.7567/1347-4065/ab1130
  19. H. Park, D. Kim, J. S. Kim, J. Hahn, and J. Park, "Performance improvement of long-range underwater acoustic communication in deep water using spatiotemporal diversity" (in Korean), J. Acoust. Soc. Kr. 38, 587-592 (2019).
  20. D. Kim, H. Park, J. S. Kim, J. Hahn, and J. Park, "Performance analysis of underwater acoustic communication based on beam diversity in deep water," (in Korean), J. Acoust. Soc. Kr. 38, 678-686 (2019).
  21. D. B. Kilfoyle and A. B. Baggeroer, "The state of the art in underwater acoustic telemetry," IEEE J. Ocean Eng. 25, 4-27 (2000). https://doi.org/10.1109/48.820733
  22. H. C. Song, W. S. Hodgkiss, W. A. Kuperman, T. Akal, and M. Stevenson, "Multiuser communication using passive time reversal," IEEE. J. Ocean. Eng. 32, 915-926 (2000). https://doi.org/10.1109/joe.2007.904311
  23. H. C. Song, J. S. Kim, W. S. Hodgkiss, and J. H. Joo, "Crosstalk mitigation using adaptive time reversal," J. Acoust. Soc. Am. 127, EL19-EL22 (2010). https://doi.org/10.1121/1.3280234
  24. S. E. Cho, H. C. Song, and W. S. Hodgkiss, "Successive interference cancellation for underwater acoustic communication," IEEE. J. Ocean. Eng. 36, 490-501 (2011). https://doi.org/10.1109/JOE.2011.2158014
  25. S. E. Cho, H. C. Song, and W. S. Hodgkiss, "Multiuser interference cancellation in time-varying channels," J. Acoust. Soc. Am. 131, EL163-EL69 (2012). https://doi.org/10.1121/1.3678668
  26. S. E. Cho, H. C. Song, and W. S. Hodgkiss, "Multiuser acoustic communications with mobile users," J. Acoust. Soc. Am. 133, 880-890 (2013). https://doi.org/10.1121/1.4773267
  27. A. Song, M. Badiey, V. MacDonald, and T. Yang, "Time reversal receiver for high data rate acoustic multiple-input-multiple-output ommunication," IEEE J. Oceanic Eng. 36, 525-538 (2011). https://doi.org/10.1109/JOE.2011.2166660
  28. A. Song and M. Badiey, "Time reversal multiple-input/multiple-output acoustic communication enhanced by parallel interference cancellation," J. Acoust. Soc. Am. 131, 281 ( 2012). https://doi.org/10.1121/1.3664085
  29. H. C. Song, W. S. Hodgkiss, W. A. Kuperman, W. J. Higley, K. Raghukumar, T. Akai, and M. Stevenson, "Spatial diversity in passive time reversal communication," J. Acoust. Soc. Am. 120, 2067-2076 (2006). https://doi.org/10.1121/1.2338286
  30. J. S. Kim, H. C. Song, and W. A. Kuperman, "Adaptive time-reversal mirror," J. Acoust. Soc. Am. 109, 1817-1825 (2001). https://doi.org/10.1121/1.1358299
  31. J. S. Kim and K. C. Shin, "Multiple focusing with adaptive time-reversal mirror," J. Acoust. Soc. Am. 115, 600-606 (2004). https://doi.org/10.1121/1.1640389
  32. D. H. Johnson and D. E. Dudgeon, Array Signal Processing-Concepts and Techniques (Prentice Hall, Englewood Cliffs, 1993), pp. 355-365.
  33. H. Cox, "Robust adaptive beamforming," IEEE Trans. Acoust. Speech, Signal Process. ASSP-35, 1365-1376 (1987). https://doi.org/10.1109/TASSP.1987.1165054
  34. J. Capon, "High resolution frequency wavenumber spectrum analysis," Proc. IEEE 58, 1408-1418 (1969). https://doi.org/10.1109/PROC.1969.7278
  35. H. C. Song, "Equivalence of adaptive time reversal and least squares for cross talk mitigation," J. Acoust. Soc. Am. 135, EL154-EL158 (2014). https://doi.org/10.1121/1.4865839