DOI QR코드

DOI QR Code

Evaluation of high power ultrasonic energy transmission characteristics of a liquid matching layer by using sonoluminescence

소노루미네센스를 이용한 액체정합층의 고출력 초음파에너지 전달특성 평가

  • Received : 2021.06.30
  • Accepted : 2021.08.19
  • Published : 2021.09.30

Abstract

In the ultrasonic dispersion, in order to avoid direct contact of the radiation surface of ultrasonic transducers with a liquid sample, the liquid sample is separated by a glass container and it receives ultrasonic energy through an acoustic medium. The transmission efficiency of the ultrasonic energy in the multi-layered ultrasonic system is an important factor. In this study, we suggested a method that can improve the ultrasonic energy transfer efficiency by using a propylene glycol solution as a liquid matching layer in the multi-layered acoustic system. In this method, a propylene glycol solution was filled between the Langevin-type ultrasonic transducer and the luminol solution and the sonoluminescence phenomena in the luminol solution, which is caused by nonlinear effect of high power ultrasound radiated from the transducer, was examined by using a Photo Multiplier Tube (PMT). The transmission efficiency depending on the concentration of propylene glycol solution was observed, and we can see that as the concentration of the propylene glycol solution increased, the matching effect increased while the acoustic attenuation increased. It was confirmed that there is an optimal concentration compromised these two conflicting conditions, and the optimum concentration of the propylene glycol solution was determined experimentally.

초음파 분산에 있어서 초음파의 방사면이 시료에 직접 닿는 것을 피하기 위해 액체시료는 유리용기에 의해 분리되어 음향매질에 의해 초음파 에너지를 받는다. 이와 같이 다층구조로 이루어진 음향시스템에서 초음파에너지의 전달효율은 중요한 요소이다. 본 연구에서는 다층구조로 이루어진 음향시스템에 있어서 프로필렌글리콜 용액을 액체정합층으로 사용하여 초음파에너지 전달효율을 개선하는 방법을 제안하였다. 제안된 방법에서는 란주반형 초음파 트랜스듀서와 루미놀용액과의 사이에 프로필렌글리콜 용액을 액체정합층 매질로 채우고, 초음파트랜스듀서로부터 방사되는 강력초음파의 비선형현상에 의해 발광되는 루미놀용액의 발광정도를 광전증폭관을 이용하여 관측하여 루미놀용액으로의 초음파에너지 전달 효율을 조사하였다. 프로필렌글리콜 농도변화에 따른 초음파에너지 전달정도를 측정하였고, 그 결과 프로필렌글리콜 용액의 농도가 증가함에 따라 정합효과는 증가하는 반면 음향감쇠가 증가함을 알 수 있었다. 이들 두 상충되는 조건이 절충되는 최적의 농도가 존재함을 확인할 수 있었으며, 프로필렌글리콜 용액의 최적 농도를 실험적으로 결정할 수 있었다.

Keywords

Acknowledgement

이 논문은 정부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2019R1F1A1062399).

References

  1. K. Sato, J. Li, H. Kamiya, and T. Ishigaki, "Ultrasonic dispersion of TiO2 nanoparticles in aqueous suspension," J. Am. Ceram. Soc. 91, 2481-2487 (2008). https://doi.org/10.1111/j.1551-2916.2008.02493.x
  2. G. Caneba, C. Dutta, V. Agrawal, and M. Rao, "Novel ultrasonic dispersion of carbon nanotubes," J. Miner. Mater. Char. Eng. 9, 165-181 (2010). https://doi.org/10.4236/jmmce.2010.93015
  3. S. Chung, J. Leonard, I. Nettleship, J. Lee, Y. Soong, D. Martello, and M. Chyu, "Characterization of ZnO nanoparticle suspension in water : Effectiveness of ultrasonic dispersion," Powder Technol. 194, 75-80 (2009). https://doi.org/10.1016/j.powtec.2009.03.025
  4. C. Asada, K. Doi, C. Sasaki, and Y. Nakamura, "Efficient extraction of starch from microalgae using ultrasonic homogenizer and its conversion into ethanol by simultaneous saccharification and fermentation," Natural Resources, 3, 175-179 (2012). https://doi.org/10.4236/nr.2012.34023
  5. Z. Ambri A. Karim, D. Tee, M. Khan, and F. Hagos, "Investigation of water-in-biodiesel emulsion characteristics produced by ultrasonic homogenizer," MATEC Web Conf. 225, 01012 (2018).
  6. C. Pholnak, C. Sirisathitkul, S. Danworaphong, and D. Harding, "Sonochemical synthesis of zinc oxide nano-particles using an ultrasonic homogenizer," Ferroelectrics, 455, 15-20 (2013). https://doi.org/10.1080/00150193.2013.843405
  7. T. Yamamoto1, Y. Miyauchi, J. Motoyanagi, T. Fukushima, T. Aida, M. Kato, and S. Maruyama, "Improved bath sonication method for dispersion of individual single-walled carbon nanotubes using new triphenylene-based surfactant," Jpn. J. Appl. Phys. 47, 2000-2004 (2008). https://doi.org/10.1143/JJAP.47.2000
  8. M. Kim and J. Kim, "Nanoparticle dispersionizer by ultrasonic cavitation and streaming," Jpn. J. Appl. Phys. 57, 07LE03 (2018). https://doi.org/10.7567/JJAP.57.07LE03
  9. J. Kim, M. Kim, and M. Chu, "Dispersion effect of nanoparticle according to ultrasound exposure using focused ultrasound field," Jpn. J. Appl. Phys. 50, 07HE19 (2011). https://doi.org/10.7567/JJAP.50.07HE19
  10. J. Kim, M. Kim, K. Ha, and M. Chu, "Dispersion method using focused ultrasonic field," Jpn. J. Appl. Phys. 49, 07HE21 (2010).
  11. J. Kim, M. Jo, K. Mun, M. Kim, K. Ha, and B. Jun, "Enhancement of ultrasonic sonoluminescence image using digital image processing" (in Korean), J. Acoust. Soc. Kr. 26, 409-414 (2007).
  12. M. Brenner, "Single-bubble sonoluminescence," Rev. Mod. Phys. 74, 425-484 (2002). https://doi.org/10.1103/RevModPhys.74.425
  13. B. P. Barber, C. C. Wu, R. Lofstedt, P. H. Roberts, and S. J. Putterman, "Sensitivity of sonoluminescence to experimental parameters," Phys. Rev. Lett. 72, 1380-1383 (1994). https://doi.org/10.1103/PhysRevLett.72.1380
  14. U. Kaatze, K. Lautscham, and M. Brai, "Acoustical absorption spectroscopy of liquids between 0.15 and 3000 MHz: II. Ultrasonic pulse transmission methods," J. Phys. E: Sci. Instrum. 21, 98-103 (1988). https://doi.org/10.1088/0022-3735/21/1/018
  15. S. Garrett, Understanding Acoustics 2nd Ed (Springer, USA, 2020), Chap. 14.
  16. H. Bass, L. Sutherland, A. Zuckerwar, D. Blackstock, and D. Hester, "Atmospheric absorption of sound: Further developments," Jpn. J. Appl. Phys. 54, 07HF13 (2015). https://doi.org/10.7567/JJAP.54.07HF13
  17. J. Kim, J. Kim, M. Kim, K. Ha, and A. Yamada, "Arrayed ultrasonic transducers on arc surface for plane wave synthesis," Jpn. J. Appl. Phys. 43, 3061-3062 (2004). https://doi.org/10.1143/JJAP.43.3061
  18. C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound (Springer, New York, 2008), Chap. 12.