DOI QR코드

DOI QR Code

Application of Nanoparticles Derived from Artemisia princeps for Cosmetic Products

쑥으로부터 유래된 나노입자의 화장품 제품 응용

  • Jung, So Young (Department of Applied Biotechnology, Ajou University) ;
  • Kang, Hae-Ran (Department of Applied Biotechnology, Ajou University) ;
  • Yoo, Han Jun (Department of Applied Biotechnology, Ajou University) ;
  • Choi, Hyeong (Department of Applied Biotechnology, Ajou University) ;
  • Heo, Hyojin (Department of Applied Biotechnology, Ajou University) ;
  • Cha, Byungsun (Department of Applied Biotechnology, Ajou University) ;
  • Brito, Sofia (Department of Applied Biotechnology, Ajou University) ;
  • Lee, So Min (Department of Applied Biotechnology, Ajou University) ;
  • Yeo, Hye Lim (Department of Applied Biotechnology, Ajou University) ;
  • Kang, Seo Jeong (Department of Applied Biotechnology, Ajou University) ;
  • Lee, Dae Yeop (Department of Applied Biotechnology, Ajou University) ;
  • Kwak, Byeong-Mun (School of Cosmetic Science and Beauty Biotechnology, Semyung University) ;
  • Lee, Mi-Gi (GBSA, Gyeonggido Business and Science Accelerator) ;
  • Bin, Bum-Ho (Department of Applied Biotechnology, Ajou University)
  • 정소영 (아주대학교 응용생명공학과) ;
  • 강해란 (아주대학교 응용생명공학과) ;
  • 유한준 (아주대학교 응용생명공학과) ;
  • 최형 (아주대학교 응용생명공학과) ;
  • 허효진 (아주대학교 응용생명공학과) ;
  • 차병선 (아주대학교 응용생명공학과) ;
  • ;
  • 이소민 (아주대학교 응용생명공학과) ;
  • 여혜림 (아주대학교 응용생명공학과) ;
  • 강서정 (아주대학교 응용생명공학과) ;
  • 이대엽 (아주대학교 응용생명공학과) ;
  • 곽병문 (세명대학교 화장품뷰티생명공학부) ;
  • 이미기 (경기도경제과학진흥원) ;
  • 빈범호 (아주대학교 응용생명공학과)
  • Received : 2021.08.27
  • Accepted : 2021.09.29
  • Published : 2021.09.30

Abstract

Nanoparticles are substances that are smaller in size and smaller than cells that make up the skin. Therefore, they are very suitable as mediators for transmitting drugs or genes across cell membranes, and also deliver specific ingredients into the skin.In this study, nanoparticles were extracted from mugwort and particles of around 100 nm were obtained through dynamic light scattering (DLS), and the results of concentration-dependent enhancement of cell viability in fibroblasts were obtained through MTT assay. In addition, it was confirmed that the COL1A1 mRNA expression level was increased and the IL-6 mRNA expression level was decreased through the quantitative real-time PCR analysis method. Moreover, as these nanoparticles were confirmed to be stable, they can be applied not only to cell experiments but also to cosmetic formulations. While the demand for plant-derived ingredients continues to increase, excluding chemical ingredients from the recent cosmetics industry trend, there is a limitation in that there are few research results suggesting the application field of plant-derived nanoparticles. Therefore, in order to overcome the limitations of the cosmetic industry at the present time, the results obtained in this study present nanoparticles derived from Artemisia princeps (NDAP) as a highly functional cosmetic material.

나노입자(nanoparticles)는 그 크기가 피부를 구성하는 세포보다 작다. 따라서 세포막을 통과하고 약물 또는 유전자를 전달하는 매개체로서의 역할에 매우 적합하며 특정 성분을 피부 속에 전달할 수도 있다. 본 연구에서는 쑥으로부터 나노입자를 추출하여 dynamic light scattering (DLS)를 통해 100 nm 전후 크기의 입자를 얻었음을 확인하였고, MTT assay를 통하여 섬유아세포에서 cell viability를 농도 의존적으로 증진시키는 결과를 얻었다. 또한, quantitative real time PCR 분석법을 통해서 COL1A1 mRNA 발현량을 증가시키고 IL-6 mRNA 발현량은 감소시킴을 확인하였다. 세포실험뿐 아니라 화장품 제형에서도 적용 가능하며, 안정함을 확인하였다. 최근 화장품 산업 동향에서 화학 성분을 배제하고 식물 유래 성분 수요가 지속적으로 높아지고 있는 반면, 식물에서 유래된 나노입자의 응용분야를 제시하는 연구 결과가 거의 없다는 한계가 있다. 따라서 현시점에서의 화장품 산업의 한계점을 극복하고자 본 연구를 통해 얻은 결과를 견주어 쑥으로부터 유래된 나노입자를 고기능성 화장품 소재로서 제시하고자 한다.

Keywords

References

  1. H. J. Lee, G. Lee, N. R. Jang, J. H. Yun, J. Y. Song, and B. S. Kim, Biological synthesis of copper nanoparticles using plant extract, Nanotechnology, 1(1), 371 (2011).
  2. S. Rhaese, H. Briesen, H. Rubsamen-Waigmann, J. Kreuter, and K. Langer, Human serum albumin-polyethylenimine nanoparticles for gene delivery, J. Control. Release., 92(1-2), 199 (2003). https://doi.org/10.1016/S0168-3659(03)00302-X
  3. E. Verleysen, T. Wagner, H. G. Lipinski, R. Kagi, R. Koeber, A. Boix-Sanfeliu, and J. Mast, Evaluation of a tem based approach for size measurement of particulate (nano) material, Materials (Basel), 12(14), 2274 (2019). https://doi.org/10.3390/ma12142274
  4. W. Lohcharoenkal, L. Wang, Y. C. Chen, and Y. Rojanasakul, Protein nanoparticles as drug delivery carriers for cancer therapy, BioMed Res. Int., 2014, 180549 (2014). https://doi.org/10.1155/2014/180549
  5. J. Mu, X. Zhuang, Q. Wang, H. Jiang, Z. B. Deng, B. Wang, L. Zhang, S. Kakar, Y. Jun, D. Miller, and H. G. Zhang, Interspecies communication between plant and mouse gut host cells through edible plant derived exosome like nanoparticles, Mol. Nutr. Food Res., 58(7), 1561 (2014). https://doi.org/10.1002/mnfr.201300729
  6. S. Y. Choi, Emerging technology-development of skin depigmenting materials using food, Bulletin of Food Technology, 25(2), 150 (2012).
  7. M. S. Park, B. M. Nam, and G. Y. Chung, Taxonomic identities of Artemisia capillaris Thunb. and A. scoparia Waldst. & Kit, Korean J. Pl. Taxon., 41(1), 1 (2011). https://doi.org/10.11110/kjpt.2011.41.1.001
  8. S. H. Chang, E. J. Jung, Y. H. Park, D. G. Lim, N. Y. Ko, W. S. Choi, E. Her, S. H. Kim, K. D. Choi, J. H. Bae, S. H. Kim, C. D. Kang, D. J. Han, and S. C. Kim, Anti-inflammatory effects of Artemisia princeps in antigen-stimulated T cells and regulatory T cells, J. Pharm. Pharmacol., 61(8), 1043 (2009). https://doi.org/10.1211/jpp.61.08.0008
  9. H. Y. Cho, S. Y. Yoon, J. J. Park, K. W. Yun, and J. M. Park, Antimicrobial activity of water-soluble extract from Artemisia princeps var. orientalis, Korean J. Biotechnol. Bioeng., 21(2), 129 (2006).
  10. G. D. Lee, J. S. Kim, J. O. Bae, and H. S. Yoon, Antioxidative effectiveness of water extract and ether extract in wormwood (Artemisia montana Pampan), J. Korean Soc. Food Nutr., 21(1), 17 (1992).
  11. U. J. Jung, N. I. Baek, H. G. Chung, M. H. Bang, J. S. Yoo, T. S. Jeong, K. T. Lee, Y. J. Kang, M. K. Lee, H. J. Kim, J. Y. Yeo, and M. S. Choi, The anti-d iabetic effects of ethanol extract from two variants of Artemisia princeps Pampanini in C57BL/KsJ-db/db mice, Food and Chemical Toxicology, 45(10), 2022 (2007). https://doi.org/10.1016/j.fct.2007.04.021
  12. M. Inui, M. Ooe, K. Fujii, H. Matsunaka, M. Yoshida, and M. Ichihashi, Mechanisms of inhibitory effects of CoQ10 on UVB-induced wrinkle formation in vitro and in vivo, Biofactors, 32(1-4), 237 (2008). https://doi.org/10.1002/biof.5520320128
  13. K. Aono, K. Isobe, K. Kiuchi, Z. H. Fan, M. Ito, A. Takeuchi, M. Miyachi, I. Nakashima, and Y. Nimura, In vitro and in vivo expression of inducible nitric oxide synthase during experimental endotoxemia: involvement of other cytokines, J. Cell. Biochem., 65(3), 349 (1997). https://doi.org/10.1002/(SICI)1097-4644(19970601)65:3<349::AID-JCB5>3.0.CO;2-S
  14. S. C. Jang, O. Y. Kim, C. M. Yoon, D. S. Choi, T. Y. Roh, J. Park, J. Nilsson, J. Lotvall, Y. K. Kim, and Y. S. Gho, Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors, ACS nano, 7(9), 7698 (2013). https://doi.org/10.1021/nn402232g
  15. C. S. Hill, Transcriptional control by the SMADs, Cold Spring Harb. Perspect Biol., 8(10), a022079 (2016). https://doi.org/10.1101/cshperspect.a022079
  16. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 65(1-2), 55 (1983). https://doi.org/10.1016/0022-1759(83)90303-4
  17. S. H. Jeon and D. H. Yi, Effects of alliin on cellular protection, up-regulation of collagen and down-regulation of MMP1 in human dermal fibroblasts, Kor. J. Aesthet. Cosmetol., 12(2), 249 (2014).