DOI QR코드

DOI QR Code

Preparation and Characterization of Planar-type Artificial Calamine Powder with a High Aspect Ratio for the Application to Ultraviolet and Blue Band Protection Cosmetics

자외선 및 블루영역 차단 화장품 응용을 위한 박막 판형 인공 칼라민 소재의 합성 및 특성 평가 연구

  • Lee, Jung-Hwan (Energy Business Unit, Duckjin Co.) ;
  • Lee, Gun-Sub (Energy Business Unit, Duckjin Co.) ;
  • Jo, Dong-Hyeon (Energy Business Unit, Duckjin Co.) ;
  • Hong, Da-Hee (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Yu, Jae-Hoon (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Gwack, Ji-Yoo (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Lee, Hee-Chul (Department of Advanced Materials Engineering, Korea Polytechnic University)
  • 이정환 (주식회사 덕진 에너지사업부) ;
  • 이건섭 (주식회사 덕진 에너지사업부) ;
  • 조동현 (주식회사 덕진 에너지사업부) ;
  • 홍다희 (한국산업기술대학교 신소재공학과) ;
  • 유재훈 (한국산업기술대학교 신소재공학과) ;
  • 곽지유 (한국산업기술대학교 신소재공학과) ;
  • 이희철 (한국산업기술대학교 신소재공학과)
  • Received : 2021.08.21
  • Accepted : 2021.09.23
  • Published : 2021.09.30

Abstract

In this study, we have prepared pure planar-type ZnO and calamine powder containing both ZnO and Fe2O3 components as a raw material for cosmetics with UV and blue band blocking functions. The planar-type ZnO ceramic powder having a high aspect ratio in the range of 20:1 to 50:1 was synthesized by precipitation method in a zinc acetate and sodium citrate mixed solution with the electrolyte obtained by power generation with a zinc-air battery. The content of Fe2O3 in the artificial calamine ceramic powder could be increased by increasing the amount of iron chloride solution added, and in this case, some of the blue region of visible light and ultraviolet light were remarkably absorbed. When potassium acetate was added, the decomposition of the Zn(OH)42- anion in the solution was promoted to facilitate the growth of ZnO crystal in the form of a barrier wall in the vertical direction on the (0001) plane, which could increase UV absorption by providing more opportunities. By controlling the amount of iron chloride solution and potassium acetate solution added, the composition and shape of the thin film plate-shaped artificial calamine ceramic powder can be optimized, and when applied to cosmetic formulations, the light transmittance of the blue region can be greatly reduced.

자외선 및 블루영역 차단 기능을 갖는 화장품의 원료로 사용되기 위한 박막 판형의 ZnO 및 Fe2O3 성분을 포함하는 인공 칼라민 세라믹 분말 소재를 합성하였다. 20 : 1에서 50 : 1 범위의 높은 종횡비를 가지는 (0001)면의 판형 ZnO 세라믹 분말 소재는 아연공기전지로 전력 생산한 후에 회수한 전해질을 출발 물질로 하여 징크아세테이트와 소듐시트레이트 혼합 용액에서 중화반응을 통한 석출로 합성하였다. 아이언 클로라이드 용액의 첨가량을 증가시키는 방법으로 인공 칼라민 세라믹 분말 내의 Fe2O3 함량을 높일 수 있었으며, 이 경우 자외선뿐만 아니라 가시광선의 블루 영역을 일부 흡수하였다. 포타슘 아세테이트 용액을 첨가시킬 경우에는 Zn(OH)42- 음이온의 분해를 촉진하여 (0001) 면 위에 수직 방향으로 격벽 형태로 성장한 박막을 얻을 수 있었는데, 이 경우 자외선을 흡수할 수 있는 기회가 증가하면서 자외선 흡수율이 증가하였다. 아이언 클로라이드 용액과 포타슘 아세테이트 용액의 첨가량을 함께 조절하면 박막 판형의 인공 칼라민 세라믹 분말의 조성 및 형상을 최적화시킬 수 있어서 화장품 제형을 진행할 경우 블루영역의 광투과도가 크게 감소하였다.

Keywords

Acknowledgement

본 연구는 보건복지부의 재원으로 한국보건산업진흥원(피부과학 응용소재·선도기술개발사업 HP20C0227), 그리고 교육부의 재원으로 한국연구재단(NRF) (중점연구소지원사업 No. NRF-2017R1A6A1A03015562)의 지원을 받아 수행한 연구과제로써 이에 감사드립니다.

References

  1. C. A. Downs, E. K. Winter, R. Segal, J. Fauth, S. Knutson, O. Bronstein, F. R. Ciner, R. Jeger, Y. Lichtenfeld, C. M. Woodley, P. Pennington, K. Cadenas, A. Kushmaro, and Y. Loya, Toxicopathological effects of the sunscreen UV filter, oxybenzone(benzophenone-), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the U. S. Virgin islands, Arch. Environ. Contam. Toxicol., 70(2), 265 (2016). https://doi.org/10.1007/s00244-015-0227-7
  2. A. Andersen, Annual review of cosmetic ingredient safety assessments, Int. J. Toxicol., 30(5), 73 (2011). https://doi.org/10.1177/1091581811412618
  3. I. Y. Kim and S. W. Kang, SPF measurement and cytotoxicity of sunscreen agents in cosmetic, Anal. Sci. Technol., 11(2), 79 (1998).
  4. E. F. Mohamed, Nanotechnology: future of environmental air pollution control, Environ. Manage. Sustainable Dev., 6(2), 429 (2017). https://doi.org/10.5296/emsd.v6i2.12047
  5. T. G. Sm ijs and S. Pavel, Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness, Nanotechnol. Sci. Appl., 4, 95 (2011). https://doi.org/10.2147/NSA.S19419
  6. M. J. Cho, H. S. Jung, M. Y. Song, H. H. Seo, A. Kulkarni, S. S. Suh, T. K. Lee, and S. H. Moh, Effect of sun screen utilizing Porphyra-334 derived from Ocean Algae for skin protection, J. Korea Acad. Industr. Coop. Soc., 15(7), 4272 (2014). https://doi.org/10.5762/KAIS.2014.15.7.4272
  7. W. Montagna, S. Kirchner, and K. Carlisle, Histology of sun-damaged human skin, J. Am. Acad. Dermatol., 21(5), 907 (1989). https://doi.org/10.1016/S0190-9622(89)70276-0
  8. O. S. Kwon, E. J. Hwang, T. S. Lee, J. M. Park, K. H. Kim, and J. H. Chung, Effects of skin temperature on UV-induced erythema and pigmentation in human skin in vivo, Korean J. Dermatol., 41(3), 326 (2003).
  9. J. Y. Seo, K. H. Cho, H. C. Eun, and J. H. Chung, Skin aging from phenotype to mechanism, Korean J. Invest. Dermatol., 8(4), 187 (2001).
  10. D. R. Lee, Y. J. Hong, H. G. Kim, and C. S. Kang, Review on the harmfulness of UV irradiation, the regulations and the appropriate approaches for UV protection, JKSCC, 6(2), 223 (2016).
  11. E. H. Lim, J. Y. Hwang, and H. J. Kim, Study on the current use of sunscreen and the development of natural materials, Kor. J. Aesthet. Cosmetol., 11(3), 427 (2013).
  12. J. H. Lee, G. S. Lee, E. N. Park, S. H. Hong, S. B. Kye, S. W. Kim, J. Y. Gwack, and H. C. Lee, Preparation and characterization of planar-type ZnO powder with high aspect ratio for application in ultraviolet- and heat-shield cosmetics, J. Nanosci. Nanotechnol., 21(3), 1897 (2021). https://doi.org/10.1166/jnn.2021.18951
  13. D. Q. Liu, Y. Liu, S. F. Han, Y. F. Zhang, and C. Y. Yin, Study on the calamine/sodium alginate modified viscose fiber, Advaned Materials Research, 418, 192 (2012).
  14. E. S. Jang, Recent progress in synthesis of plate-like ZnO and its applications: a review, J. Korean Ceram. Soc., 54(3), 167 (2017). https://doi.org/10.4191/kcers.2017.54.3.04
  15. Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, and M. J. Modermott, Biomimetic arrays of oriented helical ZnO nanorods and columns, J. Am. Chem. Soc., 124(44), 12954 (2002). https://doi.org/10.1021/ja0279545
  16. E. S. Jang, X. Chen, J. H. Won, J. H. Chung, D. J. Jang, and J. H. Choy, Soft-solution route to ZnO nanowall array with low threshold power density, Appl. Phys. Lett., 97(4), 043109 (2010). https://doi.org/10.1063/1.3466910