DOI QR코드

DOI QR Code

Complexity Issues of Perfect Roman Domination in Graphs

  • Received : 2019.11.06
  • Accepted : 2020.11.23
  • Published : 2021.09.30

Abstract

For a simple, undirected graph G = (V, E), a perfect Roman dominating function (PRDF) f : V → {0, 1, 2} has the property that, every vertex u with f(u) = 0 is adjacent to exactly one vertex v for which f(v) = 2. The weight of a PRDF is the sum f(V) = ∑v∈V f(v). The minimum weight of a PRDF is called the perfect Roman domination number, denoted by γRP(G). Given a graph G and a positive integer k, the PRDF problem is to check whether G has a perfect Roman dominating function of weight at most k. In this paper, we first investigate the complexity of PRDF problem for some subclasses of bipartite graphs namely, star convex bipartite graphs and comb convex bipartite graphs. Then we show that PRDF problem is linear time solvable for bounded tree-width graphs, chain graphs and threshold graphs, a subclass of split graphs.

Keywords

References

  1. B. Courcelle, The monadic second-order logic of graphs. I. Recognizable sets of finite graphs, Inf. Comput., 85(1990), 12-75. https://doi.org/10.1016/0890-5401(90)90043-h
  2. C. E. Leiserson, R. L. Rivest, T. H. Cormen and C. Stein, Introduction to algorithms, MIT press Cambridge, MA, 2001.
  3. D. B. West, Introduction to Graph Theory, Upper Saddle River: Prentice hall, 2001.
  4. E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi and S. T. Hedetniemi, Roman domination in graphs, Discrete Math., 278(2004), 11-22. https://doi.org/10.1016/j.disc.2003.06.004
  5. M. Yannakakis, Node-and edge-deletion np-complete problems, In Proceedings of the Tenth Annual ACM Symposium on Theo. of Comp. STOC, New York, USA, (1978), 253-264.
  6. M. Lin and C. Chen, Counting independent sets in tree convex bipartite graphs, Discrete Appl. Math., 218(2017), 113-122. https://doi.org/10.1016/j.dam.2016.08.017
  7. M. R. Garey and D. S. Johnson, Computers and Interactability : A Guide to the Theory of NP-completeness, Freeman, New York, 1979.
  8. M. A. Henning, W. F. Klostermeyer and G. MacGillivray, Perfect Roman domination in trees, Discrete Appl. Math., 236(2018), 235-245. https://doi.org/10.1016/j.dam.2017.10.027
  9. M. Darkooti, A. Alhevaz, S. Rahimi and H. Rahbani, On perfect Roman domination number in trees: complexity and bounds, Journal of Combinatorial Optimization, 38(2019), 712-720. https://doi.org/10.1007/s10878-019-00408-y
  10. N. J. Rad and L. Volkmann, Roman domination perfect graphs, An. Stiint. Univ. Ovidius Constanta Ser. Mat., 19(2019), 167-174.
  11. N. Mahadev and U. Peled, Threshold graphs and related topics, in: Annals of Discrete Mathematics, North Holland, 1995.
  12. O. Favaron H. Karami, R. Khoeilar and S. M. Sheikholeslami, On the Roman domination number of a graph, Discrete Math., 309(2009), 3447-3451. https://doi.org/10.1016/j.disc.2008.09.043
  13. R. Uehara and Y. Uno, Efficient algorithms for the longest path problem, International symposium on algorithms and computation, (2004), 871-883.
  14. S. Banerjee, J. Mark Keil and D. Pradhan, Perfect Roman domination in graphs, Theor. Comput. Sci., (2019) (Submitted).
  15. T. W. Haynes, S. Hedetniemi and P. Slater, Fundamentals of domination in graphs, CRC Press, 1998.