DOI QR코드

DOI QR Code

Analysis of Tubulysin Biosynthetic Genes in Archangium gephyra

Archangium gephyra의 tubulysin 생합성 유전자 분석

  • Received : 2021.04.26
  • Accepted : 2021.05.14
  • Published : 2021.09.28

Abstract

Tubulysins are a group of bioactive secondary metabolites from myxobacteria exhibiting strong anticancer activity against various cancer cell lines. In this study, we describe the identification of putative tubulysin biosynthetic gene clusters (tubA~tubF) in the genome sequences of two tubulysin-producing myxobacterial strains, Archangium gephyra MEHO_002 and MEHO_004. The inactivation of the putative tubulysin biosynthetic genes resulted in a tubulysin-production defect. The DNA sequences of the A. gephyra MEHO_002 and MEHO_004 tubulysin biosynthetic genes were 97% identical, and the amino acid sequences of the encoded proteins shared a similarity of 97-100%. The nucleotide sequences of the tubulysin biosynthetic gene clusters in MEHO_002 and MEHO_004 were 86% identical to that in Cystobacter sp. SBCb004 known as a tubulysin-producing myxobacterium, and the organization of the clusters was identical except for the lack of a tubZ gene in the clusters in MEHO_002 and MEHO_004. The amino acid sequences of the proteins encoded by each gene were 88-97% similar to those encoded by SBCb004, and the domain compositions of the proteins were also identical.

Tubulysin은 다양한 암세포주에 대해 강한 항암활성을 보이는 점액세균 유래 이차대사 생리활성물질이다. 본 연구에서는 tubulysin을 생산하는 두 균주의 점액세균 Archangium gephyra MEHO_002와 MEHO_004의 유전체 분석을 통해 tubulysin 생합성 유전자들로 추정되는 유전자군을 발견하였으며, 플라스미드 삽입에 의한 유전자 불활성화를 통해 이들 유전자들이 tubulysin 생산과 직접 연관되어 있음을 확인하였다. A. gephyra MEHO_002와 MEHO_004 균주의 tubulysin 생합성 유전자군(tubA~tubF)은 DNA 염기서열이 서로 97% 동일하였으며, 암호화하는 단백질들의 아미노산 서열도 서로 97-100% 유사하였다. MEHO_002와 MEHO_004 균주의 tubulysin 생합성 유전자군은 tubulysin 생산 점액세균으로 알려진 Cystobacter sp. SBCb004의 tubulysin 생합성 유전자군과 DNA 염기서열이 86% 동일하였다. 유전자군의 구성은 tubZ 유전자가 존재하지 않는다는 점을 제외하고는 SBCb004의 tubulysin 생합성 유전자군 구성과 동일하였다. 각 유전자가 암호화하는 단백질의 아미노산 서열은 Cystobacter sp. SBCb004의 tubulysin 생합성 유전자가 암호화하는 단백질들과 88-97% 유사하였으며, 각 단백질들의 도메인 구성도 동일하였다.

Keywords

References

  1. Etienne-Manneville S. 2010. From signaling pathways to microtubule dynamics: the key players. Curr. Opin. Cell Biol. 22: 104-111. https://doi.org/10.1016/j.ceb.2009.11.008
  2. Risinger AL, Giles FJ, Mooberry SL. 2009. Microtubule dynamics as a target in oncology. Cancer Treat. Rev. 35: 255-261. https://doi.org/10.1016/j.ctrv.2008.11.001
  3. Sasse F, Steinmetz H, Heil J, Hofle G, Reichenbach H. 2000. Tubulysins, new cytostatic peptides from myxobacteria acting on microtubuli. Production, isolation, physico-chemical and biological properties. J. Antibiot. 53: 879-885. https://doi.org/10.7164/antibiotics.53.879
  4. Khalil MW, Sasse F, Lunsdorf H, Elnakady YA, Reichenbach H. 2006. Mechanism of action of tubulysin, an antimitotic peptide from myxobacteria. ChemBioChem 7: 678-683. https://doi.org/10.1002/cbic.200500421
  5. Chai Y, Pistorius D, Ullrich A, Weissman KJ, Kazmaier U, Muller R. 2010. Discovery of 23 natural tubulysins from Angiococcus disciformis An d48 and Cystobacter SBCb004. Chem. Biol. 17: 296-309. https://doi.org/10.1016/j.chembiol.2010.01.016
  6. Steinmetz H, Glaser N, Herdtweck E, Sasse F, Reichenbach H, Hofle G. 2004. Isolation, crystal and solution structure determination, and biosynthesis of tubulysins - powerful inhibitors of tubulin polymerization from myxobacteria. Angew. Chem. Int. Ed. 43: 4888-4892. https://doi.org/10.1002/anie.200460147
  7. Domling A, Richter W. 2005. Myxobacterial epothilones and tubulysins as promising anticancer agents. Mol. Divers. 9: 141-147. https://doi.org/10.1007/s11030-005-1542-0
  8. Kaur G, Hollingshead M, Holbeck S, Schauer-Vukasinovic V, Camalier RF, Domling A, et al. 2006. Biological evaluation of tubulysin A: a potential anticancer and antiangiogenic natural product. Biochem. J. 396: 235-242. https://doi.org/10.1042/BJ20051735
  9. Murray BC, Peterson MT, Fecik RA. 2015. Chemistry and biology of tubulysins: antimitotic tetrapeptides with activity against drug resistant cancers. Nat. Prod. Rep. 32: 654-662. https://doi.org/10.1039/c4np00036f
  10. Reddy JA, Dorton R, Bloomfield A, Nelson M, Dircksen C, Vetzel M, et al. 2018. Pre-clinical evaluation of EC1456, a folate-tubulysin anti-cancer therapeutic. Sci. Rep. 8: 8943. https://doi.org/10.1038/s41598-018-27320-5
  11. Szigetvari NM, Dhawan D, Ramos-Vara JA, Leamon CP, Klein PJ, Ruple AA, et al. 2018. Phase I/II clinical trial of the targeted chemotherapeutic drug, folate-tubulysin, in dogs with naturally-occurring invasive urothelial carcinoma. Oncotarget 9: 37042-37053. https://doi.org/10.18632/oncotarget.26455
  12. Courter JR, Joseph Z, Hamilton JZ, Hendrick NR, Zaval M, Waight AB, et al. 2020. Structure-activity relationships of tubulysin analogues. Bioorg. Med. Chem. Lett. 30: 127241. https://doi.org/10.1016/j.bmcl.2020.127241
  13. Sandmann A, Sasse F, Muller R. 2004. Identification and analysis of the core biosynthetic machinery of tubulysin, a potent cytotoxin with potential anticancer activity. Chem. Biol. 11: 1071-1079. https://doi.org/10.1016/j.chembiol.2004.05.014
  14. Hyun H, Choi J, Kang D, Kim Y, Lee P, Chung GJY, et al. 2021. Screening of myxobacteria carrying tubulysin biosynthetic genes. Microbiol. Biotechnol. Lett. 49: 32-38. https://doi.org/10.48022/mbl.2010.10001
  15. Shin H, Youn J, An D, Cho K. 2013. Production of antimicrobial substances by strains of myxobacteria Corallococcus and Myxococcus. Kor. J. Microbiol. Biotechnol. 41: 44-51. https://doi.org/10.4014/kjmb.1210.10011
  16. Lee B, Lee C, Cho K. 2003. Isolation of dispersed mutants from wild myxobacteria. Kor. J. Microbiol. Biotechnol. 31: 342-347.
  17. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: a Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, N.Y., USA.
  18. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. 2019. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47: W81-W87. https://doi.org/10.1093/nar/gkz310
  19. Johnson M, Zaretskaya I, Raytselis Y, Mereshuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: a better web interface. Nucleic Acids Res. 36: W5-W9. https://doi.org/10.1093/nar/gkn201
  20. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43: D222-D226. https://doi.org/10.1093/nar/gku1221
  21. Shimkets LJ. 1986. Correlation of energy-dependent cell cohesion with social motility in Myxococcus xanthus. J. Bacteriol. 166: 837-841. https://doi.org/10.1128/jb.166.3.837-841.1986
  22. Chai Y, Shan S, Weissman KJ, Hu S, Zhang Y, Muller R. 2012. Heterologous expression and genetic engineering of the tubulysin biosynthetic gene cluster using Red/ET recombineering and inactivation mutagenesis. Chem. Biol. 19: 361-371. https://doi.org/10.1016/j.chembiol.2012.01.007
  23. Ullrich A, Chai Y, Pistorius D, Elnakady YA, Herrmann JE, Weissman KJ, et al. 2009. Pretubulysin, a potent and chemically accessible tubulysin precursor from Angiococcus disciformis. Angew. Chem. Int. Ed. Engl. 48: 4422-4425. https://doi.org/10.1002/anie.200900406
  24. Selva E, Gastaldo L, Saddler GS, Toppo G, Ferrari P, Carniti G, et al. 1996. Antibiotics A21459 A and B, new inhibitors of bacterial protein synthesis. I. Taxonomy, isolation and characterization. J. Antibiot. 49: 145-149. https://doi.org/10.7164/antibiotics.49.145
  25. Sasse F, Steinmetz H, Schupp T, Petersen F, Memmert K, Hofmann H, et al. 2002. Argyrins, immunosuppressive cyclic peptides from myxobacteria. I. Production, isolation, physicochemical and biological properties. J. Antibiot. 55: 543-551. https://doi.org/10.7164/antibiotics.55.543