DOI QR코드

DOI QR Code

Comparative Transcriptome Analysis of Caryophyllene-Treated Helicobacter pylori

  • Woo, Hyun Jun (Department of Clinical Laboratory Science, Semyung University) ;
  • Yang, Ji Yeong (Division of Crop Foundation, National Institute of Crop Science (NICS), Rural Development Administration (RDA)) ;
  • Kwon, Hye Jin (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University) ;
  • Kim, Hyun Woo (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University) ;
  • Kim, Sa-Hyun (Department of Clinical Laboratory Science, Semyung University) ;
  • Kim, Jong-Bae (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University)
  • 투고 : 2021.07.02
  • 심사 : 2021.08.24
  • 발행 : 2021.09.28

초록

Helicobacter pylori (H. pylori) establishes long-term infections associated with severe gastric diseases such as peptic ulceration and gastric cancer. Exposure to an antibacterial agent can help regulate the expression levels of its pathogenic genes. In this study, we analyzed the transcriptional changes in H. pylori genes induced by β-caryophyllene. We used next-generation sequencing (NGS) to analyze RNA expression changes, and reverse transcription-polymerase chain reaction (RT-PCR) was performed as required to verify the results. The NGS results showed that 30 out of 1,632 genes were expressed differentially by β-caryophyllene treatment. Eleven genes associated with DNA replication, virulence factors, and T4SS components were significantly downregulated. RT-PCR confirmed that treatment reduced the expression levels of 11 genes. RT-PCR showed the reduced expression of 11 genes (dnaE, dnaN, holB, gyrA, cagA, vacA, secA, flgE, virB2, virB4, and virB8) following β-caryophyllene treatment. These results suggest that β-caryophyllene can modulate various H. pylori pathogenic determinants and be a potential therapeutic agent for H. pylori infection.

키워드

과제정보

This paper was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Sciences and ICT) (No. 2019R1G1A1100451).

참고문헌

  1. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, et al. 2012. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 13: 607-615. https://doi.org/10.1016/S1470-2045(12)70137-7
  2. Marshall BJ, Warren JR. 1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1: 1311-1315. https://doi.org/10.1016/S0140-6736(84)91816-6
  3. Warren JR, Marshall B. 1983. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1: 1273-1275.
  4. Salama NR, Hartung ML, Muller A. 2013. Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat. Rev. Microbiol. 11: 385-399. https://doi.org/10.1038/nrmicro3016
  5. Amieva M, Peek RM, Jr. 2016. Pathobiology of Helicobacter pyloriinduced gastric cancer. Gastroenterology 150: 64-78. https://doi.org/10.1053/j.gastro.2015.09.004
  6. Wang F, Meng W, Wang B, Qiao L. 2014. Helicobacter pyloriinduced gastric inflammation and gastric cancer. Cancer Lett. 345: 196-202. https://doi.org/10.1016/j.canlet.2013.08.016
  7. de Almeida Borges VR, Ribeiro AF, de Souza Anselmo C, Cabral LM, de Sousa VP. 2013. Development of a high performance liquid chromatography method for quantification of isomers beta-caryophyllene and alpha-humulene in copaiba oleoresin using the Box-Behnken design. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 940: 35-41. https://doi.org/10.1016/j.jchromb.2013.09.024
  8. Ghelardini C, Galeotti N, Di Cesare Mannelli L, Mazzanti G, Bartolini A. 2001. Local anaesthetic activity of beta-caryophyllene. Farmaco 56: 387-389. https://doi.org/10.1016/S0014-827X(01)01092-8
  9. Kamatou GP, Vermaak I, Viljoen AM. 2012. Eugenol--from the remote Maluku Islands to the international market place: a review of a remarkable and versatile molecule. Molecules 17: 6953-6981. https://doi.org/10.3390/molecules17066953
  10. Crevelin EJ, Caixeta SC, Dias HJ, Groppo M, Cunha WR, Martins CH, et al. 2015. Antimicrobial activity of the essential oil of Plectranthus neochilus against cariogenic bacteria. Evid. Based Complement. Alternat. Med. 2015: 102317.
  11. Nikolic M, Stojkovic D, Glamoclija J, Ciric A, Markovic T, Smiljkovic M, et al. 2015. Could essential oils of green and black pepper be used as food preservatives? J. Food Sci. Technol. 52: 6565-6573. https://doi.org/10.1007/s13197-015-1792-5
  12. Schmidt E, Bail S, Friedl SM, Jirovetz L, Buchbauer G, Wanner J, et al. 2010. Antimicrobial activities of single aroma compounds. Nat. Prod. Commun. 5: 1365-1368.
  13. Venturi CR, Danielli LJ, Klein F, Apel MA, Montanha JA, Bordignon SA, et al. 2015. Chemical analysis and in vitro antiviral and antifungal activities of essential oils from Glechon spathulata and Glechon marifolia. Pharm. Biol. 53: 682-688. https://doi.org/10.3109/13880209.2014.936944
  14. Woo HJ, Yang JY, Lee MH, Kim HW, Kwon HJ, Park M, et al. 2020. Inhibitory effects of β-caryophyllene on Helicobacter pylori infection in vitro and in vivo. Int. J. Mol. Sci. 21: 1008. https://doi.org/10.3390/ijms21031008
  15. Choe D, Palsson B, Cho B-K. 2020. STATR: A simple analysis pipeline of Ribo-Seq in bacteria. J. Microbiol. 58: 217-226. https://doi.org/10.1007/s12275-020-9536-2
  16. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28: 511-515. https://doi.org/10.1038/nbt.1621
  17. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7: 562-578. https://doi.org/10.1038/nprot.2012.016
  18. Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Statistical Soc. series B (Methodological) 57: 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  19. Nitharwal RG, Verma V, Dasgupta S, Dhar SK. 2011. Helicobacter pylori chromosomal DNA replication: current status and future perspectives. FEBS Lett. 585: 7-17. https://doi.org/10.1016/j.febslet.2010.11.018
  20. Song MS, Pham PT, Olson M, Carter JR, Franden MA, Schaaper RM, et al. 2001. The δ and δ' subunits of the DNA polymerase III holoenzyme are essential for initiation complex formation and processive elongation. J. Biol. Chem. 276: 35165-35175. https://doi.org/10.1074/jbc.M100389200
  21. Reece RJ, Maxwell A. 1991. DNA gyrase: structure and function. Crit. Rev. Biochem. Mol. Biol. 26: 335-375. https://doi.org/10.3109/10409239109114072
  22. de Souza Mendes C, de Souza Antunes AM. 2013. Pipeline of known chemical classes of antibiotics. Antibiotics (Basel) 2: 500-534. https://doi.org/10.3390/antibiotics2040500
  23. Goh KL, Chan WK, Shiota S, Yamaoka Y. 2011. Epidemiology of Helicobacter pylori infection and public health implications. Helicobacter 16 Suppl 1: 1-9.
  24. Fan E, Chauhan N, Udatha DB, Leo JC, Linke D. 2016. Type V secretion systems in bacteria. Microbiol Spectr. 4. doi: 10.1128/microbiolspec.VMBF-0009-2015.
  25. Boquet P, Ricci V. 2012. Intoxication strategy of Helicobacter pylori VacA toxin. Trends Microbiol. 20: 165-174. https://doi.org/10.1016/j.tim.2012.01.008
  26. Kwok T, Zabler D, Urman S, Rohde M, Hartig R, Wessler S, et al. 2007. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449: 862-866. https://doi.org/10.1038/nature06187
  27. Merino E, Flores-Encarnacion M, Aguilar-Gutierrez GR. 2017. Functional interaction and structural characteristics of unique components of Helicobacter pylori T4SS. FEBS J. 284: 3540-3549. https://doi.org/10.1111/febs.14092
  28. Terradot L, Waksman G. 2011. Architecture of the Helicobacter pylori Cag-type IV secretion system. FEBS J. 278: 1213-1222. https://doi.org/10.1111/j.1742-4658.2011.08037.x
  29. Kwon HJ, Lee MH, Kim HW, Yang JY, Woo HJ, Park M, et al. 2020. Riboflavin inhibits growth of Helicobacter pylori by down-regulation of polA and dnaB genes. Biomed. Sci. Lett. 26: 288-295. https://doi.org/10.15616/BSL.2020.26.4.288
  30. Boonjakuakul JK, Canfield DR, Solnick JV. 2005. Comparison of Helicobacter pylori virulence gene expression in vitro and in the rhesus macaque. Infect. Immun. 73: 4895-4904. https://doi.org/10.1128/IAI.73.8.4895-4904.2005
  31. Niehues M, Stark T, Keller D, Hofmann T, Hensel A. 2011. Antiadhesion as a functional concept for prevention of pathogens: NPhenylpropenoyl-L-amino acid amides as inhibitors of the Helicobacter pylori BabA outer membrane protein. Mol. Nutr. Food Res. 55: 1104-1117. https://doi.org/10.1002/mnfr.201000548
  32. Kim SH, Park M, Woo H, Tharmalingam N, Lee G, Rhee KJ, et al. 2012. Inhibitory effects of anthocyanins on secretion of Helicobacter pylori CagA and VacA toxins. Int. J. Med. Sci. 9: 838-842. https://doi.org/10.7150/ijms.5094
  33. Tharmalingam N, Kim SH, Park M, Woo HJ, Kim HW, Yang JY, et al. 2014. Inhibitory effect of piperine on Helicobacter pylori growth and adhesion to gastric adenocarcinoma cells. Infect. Agent Cancer 9: 43. https://doi.org/10.1186/1750-9378-9-43
  34. Kim SH, Lee MH, Park M, Woo HJ, Kim YS, Tharmalingam N, et al. 2018. Regulatory effects of black rice extract on Helicobacter pylori infection-induced apoptosis. Mol. Nutr. Food Res. 62: 1700586. https://doi.org/10.1002/mnfr.201700586
  35. Lee MH WH, Park M, Moon C, Eom YB, Kim SH, Kim JB. 2016. Plumbagin inhibits expression of virulence factors and growth of Helicobacter pylori. Microbiol. Biotechnol. Lett. 44: 218-226. https://doi.org/10.4014/mbl.1603.03002