DOI QR코드

DOI QR Code

Molecular Cloning, Protein Expression, and Regulatory Mechanisms of the Chitinase Gene from Spodoptera littoralis Nucleopolyhedrovirus

  • Yasser, Norhan (Agricultural Genetic Engineering Research Institute, ARC) ;
  • Salem, Reda (Agricultural Genetic Engineering Research Institute, ARC) ;
  • Alkhazindar, Maha (Faculty of Science, Cairo University) ;
  • Abdelhamid, Ismail A. (Faculty of Science, Cairo University) ;
  • Ghozlan, Said A.S. (Faculty of Science, Cairo University) ;
  • Elmenofy, Wael (Agricultural Genetic Engineering Research Institute, ARC)
  • Received : 2021.04.05
  • Accepted : 2021.07.22
  • Published : 2021.09.28

Abstract

The cotton leafworm, Spodoptera littoralis, is a major pest in Egypt and many countries worldwide, and causes heavy economic losses. As a result, management measures to control the spread of the worm are required. S. littoralis nucleopolyhedrovirus (SpliNPV) is one of the most promising bioagents for the efficient control of insect pests. In this study, a chitinase gene (chitA) of a 1.8 kb DNA fragment was cloned and fully characterized from SpliNPV-EG1, an Egyptian isolate. A sequence of 601 amino acids was deduced when the gene was completely sequenced with a predicted molecular mass of 67 kDa for the preprotein. Transcriptional analyses using reverse transcription polymerase chain reaction (RT-PCR) revealed that chitA transcripts were detected first at 12 h post infection (hpi) and remained detectable until 168 hpi, suggesting their transcriptional regulation from a putative late promoter motif. In addition, quantitative analysis using quantitative RT-PCR showed a steady increase of 7.86-fold at 12 hpi in chitA transcription levels, which increased up to 71.4-fold at 120 hpi. An approximately 50 kDa protein fragment with chitinolytic activity was purified from ChitA-induced bacterial culture and detected by western blotting with an anti-recombinant SpliNPV chitinase antibody. Moreover, purification of the expressed ChitA recombinant protein showed in vitro growth inhibition of two different fungi species, Fusarium solani and F. oxysporum, confirming that the enzyme assembly and activity was correct. The results supported the potential role and application of the SpliNPV-ChitA protein as a synergistic agent in agricultural fungal and pest control programs.

Keywords

References

  1. Kumar B. 2016. Biocontrol of insect pests (Ch.2). pp. 25-61. In: Ecofriendly pest management for food security (Editor: Omkar). Academic Press, India.
  2. van Oers MM, Pijlman GP, Vlak JM. 2015. Thirty years of baculovirusinsect cell protein expression: From dark horse to mainstream technology. J. Gen. Virol. 96: 6-23. https://doi.org/10.1099/vir.0.067108-0
  3. Elgaied L, Salem R, Elmenofy W. 2017. Expression of tomato yellow leaf curl virus coat protein using baculovirus expression system and evaluation of its utility as a viral antigen. 3 Biotech. 7: 269. https://doi.org/10.1007/s13205-017-0893-4
  4. Elmenofy W, Mohamed I, El-Gaied L, Salem R, Osman G, Ibrahim M. 2020. Expression of 1B capsid protein of Foot-and-mouth disease virus (FMDV) using baculovirus expression system and its validation in detecting SAT 2- specific antisera. Peer J. 8: e8946. https://doi.org/10.7717/peerj.8946
  5. Theilmann DA, Blissard GW, Bonning B, Jehle J, O'Reilly DR, Rohrmann GF, et al. 2005. "Baculoviridae" Eighth report of the international committee on taxonomy of viruses. pp. 177-185. Van Regenmortel HV, Bishop DHL, Van Regenmortel MH, Fauquet CM (eds.), Elsevier Academic Press, New York, USA.
  6. El-Menofy W, Osman G, Assaeedi A, Salama M. 2014. A novel recombinant baculovirus overexpressing a Bacillus thuringiensis Cry1Ab toxin enhances insecticidal activity. Biol. Proced. Online 16: 7. https://doi.org/10.1186/1480-9222-16-7
  7. Elmenofy WH, Jehle AJ. 2015. Possible functional co-operation of palindromes hr3 and hr4 in the genome of Cydia pomonella granulovirus affects viral replication capacity. J. Gen. Virol. 96: 2888-22897. https://doi.org/10.1099/vir.0.000195
  8. Abdallah NA, El-Menofy W, Abdelhadi AA. 2017. Designing of a recombinant Agip-bacmid construct with infectious properties against black cutworm Agrotis ipsilon larvae. Appl. Biochem. Biotechnol. 183: 307-317. https://doi.org/10.1007/s12010-017-2446-z
  9. Moscardi F. 1999. Assessment of the application of baculoviruses for control of Lepidoptera. Annu. Rev. Entomol. 44: 257-289. https://doi.org/10.1146/annurev.ento.44.1.257
  10. Tharanathan RN, Kittur FS. 2003. Chitin-The undisputed biomolecule of great potential. Crit. Rev. Food Sci. Nutr. 43: 61-87. https://doi.org/10.1080/10408690390826455
  11. Kasprzewska A. 2003. Plant chitinases-regulation and function. Cell Mol. Biol. Lett. 8: 809-824.
  12. Merzendorfer H, Zimoch L. 2003. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol. 206: 4393-4412. https://doi.org/10.1242/jeb.00709
  13. Thomas CJ, Gooday GW, King LA, Possee RD. 2000. Mutagenesis of the active site coding region of the Autographa californica nucleopolyhedrovirus chiA gene. J. Gen. Virol. 81: 1403-1411.
  14. Hawtin RE, Zarkowska T, Arnold K, Thomas CJ, Gooday GW, King LA, et al. 1997. Liquefaction of Autographa californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Virology 238: 243-253. https://doi.org/10.1006/viro.1997.8816
  15. Hughes AL, Friedman R. 2003. Genome-wide survey for genes horizontally transferred from cellular organisms to baculoviruses. Mol. Biol. Evol. 20: 979-987. https://doi.org/10.1093/molbev/msg107
  16. Kang W, Tristem M, Maeda S, Crook NE, O'Reilly DR. 1998. Identification and characterization of the Cydia pomonella granulovirus cathepsin and chitinase genes. J. Gen. Virol. 79: 2283-2292. https://doi.org/10.1099/0022-1317-79-9-2283
  17. Hawtin RE, Arnold K, Ayres MD, Zanotto PM, Howard SC, Gooday GW, et al. 1995. Identification and preliminary characterization of a chitinase gene in the Autographa californica nuclear polyhedrosis virus genome. Virology 212: 673-685. https://doi.org/10.1006/viro.1995.1525
  18. Daimon T, Katsuma S, Kang W, Shimada T. 2006. Comparative studies of Bombyx mori nucleopolyhedrovirus chitinase and its host ortholog, BmChi-h. Biochem. Biophys. Res. Commun. 345: 825-833. https://doi.org/10.1016/j.bbrc.2006.04.112
  19. Saville GP, Thomas CJ, Possee RD, King LA. 2002. Partial redistribution of the Autographa californica nucleopolyhedrovirus chitinase in virus-infected cells accompanies mutation of the carboxy-terminal KDEL ER-retention motif. J. Gen. Virol. 83: 685-694. https://doi.org/10.1099/0022-1317-83-3-685
  20. Saville GP, Patmanidi AL, Possee RD, King LA. 2004. Deletion of the Autographa californica nucleopolyhedrovirus chitinase KDEL motif and in vitro and in vivo analysis of the modified virus. J. Gen. Virol. 85: 821-831. https://doi.org/10.1099/vir.0.19732-0
  21. Seufi AM. 2008. Characterization of an Egyptian Spodoptera littoralis nucleopolyhedrovirus and a possible use of a highly conserved region from polyhedrin gene for nucleopolyhedrovirus detection. Virol. J. 5: 13. https://doi.org/10.1186/1743-422X-5-13
  22. Atia MA, Osman GH, Elmenofy WH. 2016. Genome-wide in silico analysis, characterization and identification of microsatellites in Spodoptera littoralis multiple nucleopolyhedrovirus (SpliMNPV). Sci. Rep. 6: 33741. https://doi.org/10.1038/srep33741
  23. Breitenbacha JE, El-Sheikha A, Harrison RB, Rowleyb DL, Sparksb ME, Gundersen-Rindalb DE, et al. 2013. Determination and analysis of the genome sequence of Spodoptera littoralis multiple nucleopolyhedrovirus. Virus Res. 171: 194-208. https://doi.org/10.1016/j.virusres.2012.11.016
  24. Ivaldi-Sender C. 1974. Techniques simples pour elevage permanent de la tordeuse orientale, Grapholita molesta (Lep., Tortricdae), sur milieu artificiel. Ann. Zoo Ecol. Anim. 6: 337-343.
  25. Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467. https://doi.org/10.1073/pnas.74.12.5463
  26. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  27. Salem R, Assem KS, Omar AO, Khalil AA, Basry AM, Waly RF, et al. 2020. Expressing the immunodominant projection domain of infectious bursal disease virus fused to the fragment crystallizable of chicken IgY in yellow maize for a prospective edible vaccine. Mol. Immunol. 118C: 132-141.
  28. Salem R, El-Kholy AA, Ibrahim M. 2019. Eight novel single chain antibody fragments recognizing VP2 of foot-and-mouth disease virus serotypes A, O, and SAT 2. Virology 533: 145-154. https://doi.org/10.1016/j.virol.2019.05.012
  29. Salmaninezhad F, Mostowfizadeh-Ghalamfarsa R. 2019. Three new pythium species from rice paddy fields. Mycologia 111: 274-290. https://doi.org/10.1080/00275514.2018.1543486
  30. Vaaje-Kolstad G, Douglas RH, Francesco VR, Martin GP, Bjornar S, Daan MF, et al. 2004. Structure of the D142N mutant of the family 18 chitinase ChiB from Serratia marcescens and its complex with allosamidin. Biochim. Biophys. Acta 1696: 103-111. https://doi.org/10.1016/j.bbapap.2003.09.014
  31. Wang H, Wu D, Deng F, Peng H, Chen X, Lauzon H, et al. 2004. Characterization and phylogenetic analysis of the chitinase gene from the Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus. Virus Res. 100: 179-189. https://doi.org/10.1016/j.virusres.2003.11.015
  32. Fang M, Wang H, Wang H, Yuan L, Chen X, Vlak JM, et al. 2003. Open reading frame 94 of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus encodes a novel conserved occlusion-derived virion protein, ODV-EC43. J. Gen. Virol. 84: 3021-3027. https://doi.org/10.1099/vir.0.19291-0
  33. He L, Yu H, Xu CY, Zhao Y, Yang FX, Guo YD, et al. 2019. Molecular characterization, activity analysis and transcriptional detection of chitinases encoded in the genome of Spodoptera exigua. J. ASIA-PAC Entomol. 22: 499-505. https://doi.org/10.1016/j.aspen.2019.03.007
  34. Ahrens CH, Russell RL, Funk CJ, Evans JT, Harwood SH, Rohrmann GF. 1997. The sequence of the Orgyia pseudosugata multi nucleocapsid nuclear polyhedrosis virus genome. Virology 229: 381-399. https://doi.org/10.1006/viro.1997.8448
  35. Ayres MD, Howard SC, Kuzio J, Lopez-Ferber M, Possee RD. 1994. The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202: 586-605. https://doi.org/10.1006/viro.1994.1380
  36. Hyink O, Dellow RA, Olsen MJ, Caradoc-Davies KM, Drake K, Herniou EA, et al. 2002. Whole genome analysis of the Epiphyas postvittana nucleopolyhedrovirus. J. Gen. Virol. 83: 957-971. https://doi.org/10.1099/0022-1317-83-4-957
  37. Chen X, Ijkel WF, Tarchini R, Sun X, Sandbrink H, Wang H, et al. 2001. The sequence of the Helicoverpa armigera single nucleocapsids nucleopolyhedrovirus genome. J. Gen. Virol. 82: 241-257. https://doi.org/10.1099/0022-1317-82-1-241
  38. Li Q, Donly C, Li L, Willis LG, Theilmann DA, Erlandson M. 2002. Sequence and organization of the Mamestra configurate nucleopolyhedrovirus genome. Virology 294: 106-121. https://doi.org/10.1006/viro.2001.1313
  39. Frigerio L, Pastres A, Prada A, Vitale A. 2001. Influence of KDEL on the fate of trimeric or assembly-defective phaseolin: Selective use of an alternative route to vacuoles. Plant Cell 13: 1109-1126. https://doi.org/10.2307/3871367
  40. Stuart E, Reynolds, Richard I, Samuels. 1996. Physiology and biochemistry of insect moulting fluid. Adv. Insect Physiol. 26: 157-232. https://doi.org/10.1016/S0065-2806(08)60031-4
  41. Filho BP, Lemos FJ, Secundino NF, Pascoa V, Pereira ST, Pimenta PF. 2002. Presence of chitinase and beta-N-acetylglucosaminidase in the Aedes aegypti: a chitinolytic system involving peritrophic matrix formation and degradation. Insect Biochem. Mol. Biol. 32: 1723-1729. https://doi.org/10.1016/S0965-1748(02)00112-1
  42. Zhang D, Chen J, Yao Q, Pan Z, Chenet J, Zhang W. 2012. Functional analysis of two chitinase genes during the pupation and eclosion stages of the beet armyworm Spodoptera exigua by RNA interference. Arch Insect Biochem. 79: 220-234. https://doi.org/10.1002/arch.21018
  43. Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S. 2008. Functional specialization among insect Chitinase family genes revealed by RNA interference. PNAS 105: 6650-6655. https://doi.org/10.1073/pnas.0800739105
  44. Takahashi M, Kiuchi M, Kamimura M. 2002. A new chitinase-related gene, BmChiR1, is induced in the Bombyx mori anterior silk gland at molt and metamorphosis by ecdysteroid. Insect Biochem. Mol. Biol. 32: 147-151. https://doi.org/10.1016/S0965-1748(01)00102-3
  45. Xu H, He L, Xiao W, Shen G. 2017. Identification of the key chitinase genes in Tetranychus cinnabarinus (Boisduval) based on the expression and sequence characteristic analysis. J. Integr. Agric. 16: 892-899. https://doi.org/10.1016/S2095-3119(16)61480-6
  46. Oh S, Kim DH, Bharat BP, Patnaik BB, Jo YH, Noh MY, et al. 2013. Molecular and immunohistochemical characterization of the chitinase gene from Pieris rapae granulovirus. Arch. Virol. 158: 1701-1718. https://doi.org/10.1007/s00705-013-1649-z
  47. Schoffelmeer EA, Klis FM, Sietsma JH, Cornelissen BJ. 1999. The cell wall of Fusarium oxysporum. Fungal Genet. Biol. 27: 275-282. https://doi.org/10.1006/fgbi.1999.1153
  48. Kawase T, Yokokawa S, Saito A, Fujii T, Nikaidouet N, Miyashita K, et al. 2006. Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2). Biosci. Biotechnol. Biochem. 70: 988-998. https://doi.org/10.1271/bbb.70.988