DOI QR코드

DOI QR Code

중금속 및 디젤 오염 토양에서 분리한 중금속 내성 식물 생장 촉진 근권세균의 특성

Characterization of Heavy Metal Tolerant and Plant Growth-Promoting Rhizobacteria Isolated from Soil Contaminated with Heavy Metal and Diesel

  • 이수연 (이화여자대학교 환경공학과) ;
  • 이윤영 (이화여자대학교 환경공학과) ;
  • 조경숙 (이화여자대학교 환경공학과)
  • Lee, Soo Yeon (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Lee, Yun-Yeong (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • 투고 : 2021.06.26
  • 심사 : 2021.08.05
  • 발행 : 2021.09.28

초록

식물과 근권미생물을 이용해 토양 오염물질을 제거하는 rhizoremediation의 효율을 높이기 위해서는 오염물질을 제거함과 동시에 식물 생장을 촉진시키는 미생물 자원 개발이 필요하다. 본 연구에서는 중금속 및 유류 복합 오염 토양에서 서식하고 있는 옥수수와 톨페스큐의 근권으로부터 중금속(구리, 카드뮴 및 납) 내성을 가진 근권세균을 순수분리하였고, 식물 생장 촉진능, 중금속 내성능 및 디젤 분해능을 정성적으로 평가하였다. 그 결과 중금속 내성, 식물 생장 촉진 활성 및 디젤 분해능을 가진 6종의 균주를 분리하였다. 옥수수 근권에서 분리한 CuM5와 CdM2 균주는 Cupriavidus sp.로 동정되었다. 톨페스큐 근권에서 분리한 CuT6, CdT2, CdT5 및 PbT3는 각각 Fulvimonas soli, Cupriavidus sp., Novosphingonium sp. 및 Bacillus sp.로 동정되었다. Cupriavidus sp. CuM5와 CdM2는 중금속 내성과 디젤 분해능은 상대적으로 낮았으나, 식물 생장 촉진능이 상대적으로 우수하였다. 6종 중에서 디젤 분해능이 가장 우수한 균주는 Cupriavidus sp. CdT2와 Bacillus sp. PbT3이었다. 특히, Bacillus sp. PbT3는 3종의 중금속에 대해 상대적으로 우수한 내성을 가졌고 식물 생장 촉진능도 우수하였다. 본 연구에서 분리한 근권세균은 유류와 중금속 복합 오염 토양을 정화시키며 식물 생장을 촉진시키는 새로운 미생물 자원으로 활용 가능하다.

In order to enhance rhizoremediation performance, which remediates contaminated soils using the interactions between plants and microorganisms in rhizosphere, it is required to develop effective microbial resources that simultaneously degrade contaminants and promote plant growth. In this study, heavy metal-resistant rhizobacteria, which had been cultivated in soils contaminated with heavy metals (copper, cadmium, and lead) and diesel were isolated from rhizospheres of maize and tall fescue. After that, the isolates were qualitatively evaluated for plant growth promoting (PGP) activities, heavy metal tolerance, and diesel degradability. As a result, six strains with heavy metal tolerance, PGP activities, and diesel degradability were isolated. Strains CuM5 and CdM2 were isolated from the rhizosphere soils of maize, and were identified as belonging to the genus Cupriavidus. From the rhizosphere soils of tall fescue, strains CuT6, CdT2, CdT5, and PbT3 were isolated and were identified as Fulvimonas soli, Cupriavidus sp., Novosphingobium sp., and Bacillus sp., respectively. Cupriavidus sp. CuM5 and CdM2 showed a low heavy metal tolerance and diesel degradability, but exhibited an excellent PGP ability. Among the six isolates, Cupriavidus sp. CdT2 and Bacillus sp. PbT3 showed the best diesel degradability. Additionally, Bacillus sp. PbT3 also exhibited excellent heavy metal tolerance and PGP abilities. These results indicate that the isolates can be used as promising microbial resources to promote plant growth and restore soils with contaminated heavy metals and diesel.

키워드

과제정보

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2019R1A2C2006701).

참고문헌

  1. Kumar V, Pandita S, Singh Sidhu GP, Sharma A, Khanna K, Kaur P, et al. 2021. Copper bioavailability, uptake, toxicity and tolerance in plants: a comprehensive review. Chemosphere 262: 127810. https://doi.org/10.1016/j.chemosphere.2020.127810
  2. Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Goncalves B, Santos C. 2013. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol. Plant. 35: 1281-1289. https://doi.org/10.1007/s11738-012-1167-8
  3. Zulfiqar U, Farooq M, Hussain S, Maqsood M, Hussain M, Ishfaq M, et al. 2019. Lead toxicity in plants: Impacts and remediation. J. Environ. Manage. 250: 109557. https://doi.org/10.1016/j.jenvman.2019.109557
  4. Joo JO, Kim IH, Oh B-K. 2014. Removal of Cupper(II), Zinc(II) in marine environment by heavy metal resistant Desulfovibrio desulfuricans. KSBB J. 29: 139-144. https://doi.org/10.7841/ksbbj.2014.29.3.139
  5. Koo S, Cho K. 2007. Characterization of a heavy metal-resistant and plant growth-promoting rhizobacterium, Methylobacterium sp. SY-NiR1. Korean J. Microbiol. Biotechnol. 35: 58-65.
  6. Benitez E, Melgar R, Nogales R. 2004. Estimating soil resilience to a toxic organic waste by measuring enzyme activities. Soil Biol. Biochem. 36: 1615-1623. https://doi.org/10.1016/j.soilbio.2004.07.014
  7. Wohler, I. 1997. Auxin-indole derivatives in soils determined by a colorimetric method and by high performance liquid chromatography. Microbiol. Res. 152: 399-405. https://doi.org/10.1016/S0944-5013(97)80058-4
  8. Nagarajkumar M, Bhaskaran R, Velazhahan R. 2004. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol. Res. 159: 73-81. https://doi.org/10.1016/j.micres.2004.01.005
  9. Hwang JS, Song HG. 2020. Antifungal activity of Bacillus subtilis isolates against toxigenic fungi. Korean J. Microbiol. 56: 28-35.
  10. Grobelak A, Kokot P, Swiatek J, Jaskulak M, Rorat A. 2018. Bacterial ACC deaminase activity in promoting plant growth on areas contaminated with heavy metals. J. Ecol. Eng. 19: 150-157.
  11. Dell'Amico E, Cavalca L, Andreoni V. 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol Ecol. 52: 153-162. https://doi.org/10.1016/j.femsec.2004.11.005
  12. Barrado LN. 2018. Isolation and characterisation of endophytes from vitis vinifera. Univ Politecnica Valencia, pp. 1-25.
  13. Lee YY, Seo Y, Ha M, Lee J, Yang H, Cho KS. 2021. Evaluation of rhizoremediation and methane emission in diesel-contaminated soil cultivated with tall fescue (Festuca arundinacea). Environ. Res. 194: 110606. https://doi.org/10.1016/j.envres.2020.110606
  14. Hajdu R, Slaveykova VI. 2012. Cd and Pb removal from contaminated environment by metal resistant bacterium Cupriavidus metallidurans CH34: Importance of the complexation and competition effects. Environ. Chem. 9: 389-398. https://doi.org/10.1071/EN12015
  15. Lyu Y, Zheng W, Zheng T, Tian Y. 2014. Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS One 9: 101438.
  16. Deng Y, Yang F, Deng C, Yang J, Jia J, Yuan H. 2017. Biodegradation of BTEX aromatics by a haloduric microbial consortium enriched from a sediment of Bohai Sea, China. Appl. Biochem. Biotechnol. 183: 893-905. https://doi.org/10.1007/s12010-017-2471-y
  17. Babu AG, Kim JD, Oh BT. 2013. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J. Hazard Mater. 250: 477-483. https://doi.org/10.1016/j.jhazmat.2013.02.014
  18. Jiang C, Sheng X, Qian M, Wang Q. 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72: 157-164. https://doi.org/10.1016/j.chemosphere.2008.02.006
  19. Hong S, Cho K-S. 2007. Effects of plants, rhizobacteria and physicochemical factors on the phytoremediation of contaminated soil. Korean J. Microbiol. Biotechnol. 35: 261-271.
  20. Oh SD, Ahn BO, Kim MK, Sohn SI, Ryu TH, Cho HS, et al. 2010. Effects of protox herbicide tolerance rice cultivation on microbial community in paddy soil. Korean J. Env. Agric. 32: 95-101. https://doi.org/10.5338/KJEA.2013.32.2.95
  21. Dotaniya ML, Meena VD. 2015. Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proc. Natl. Acad. Sci. India Sect. B - Biol Sci. 85: 1-12. https://doi.org/10.1007/s40011-013-0297-0
  22. Ashraf R, Ali TA. 2007. Effect of heavy metals on soil microbial community and mung beans seed germination. Pakistan J. Bot. 39: 629.
  23. Wang L, Wang J, Zhu L, Wang J. 2018. Toxic effects of oxytetracycline and copper, separately or combined, on soil microbial biomasses. Environ. Geochem. Health 40: 763-776. https://doi.org/10.1007/s10653-017-0022-7
  24. Kabagale AC, Cornu B, Van Vliet F, Meyer CL, Mergeay M, Simbi JBL, et al. 2010. Diversity of endophytic bacteria from the cuprophytes Haumaniastrum katangense and Crepidorhopalon tenuis. Plant Soil 334: 461-474. https://doi.org/10.1007/s11104-010-0396-0
  25. Xiao L, Yu Z, Liu H, Tan T, Yao J, Zhang Y, et al. 2020. Effects of Cd and Pb on diversity of microbial community and enzyme activity in soil. Ecotoxicology 29: 551-558. https://doi.org/10.1007/s10646-020-02205-4
  26. Prapagdee B, Watcharamusik A. 2009. Adaptive and cross-protective responses against cadmium and zinc toxicity in cadmium-resistant bacterium isolated from a zinc mine. Braz. J. Microbiol. 40: 838-845. https://doi.org/10.1590/S1517-83822009000400014
  27. Estrada-De Los Santos P, Solano-Rodriguez R, Matsumura-Paz LT, Vasquez-Murrieta MS, Martinez-Aguilar L. 2014. Cupriavidus plantarum sp. nov., a plant-associated species. Arch Microbiol. 196: 811-817. https://doi.org/10.1007/s00203-014-1018-7
  28. Liu X, Wei S, Wang F, James EK, Guo X, Zagar C, et al. 2012. Burkholderia and Cupriavidus spp. are the preferred symbionts of Mimosa spp. in Southern China. FEMS Microbiol. Ecol. 80: 417-426. https://doi.org/10.1111/j.1574-6941.2012.01310.x
  29. Yang C, Ho YN, Makita R, Inoue C, Chien MF. 2020. Cupriavidus basilensis strain r507, a toxic arsenic phytoextraction facilitator, potentiates the arsenic accumulation by Pteris vittata. Ecotoxicol. Environ. Saf. 190: 110075. https://doi.org/10.1016/j.ecoenv.2019.110075
  30. Siripornadulsil S, Siripornadulsil W. 2013. Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation. Ecotoxicol. Environ. Saf. 94: 94-103. https://doi.org/10.1016/j.ecoenv.2013.05.002
  31. Vicentin RP, Santos JV, Labory CRG, Costa AM, Moreira FMS, Alves E. 2018. Tolerance to and Accumulation of Cadmium, Copper, and Zinc by Cupriavidus necator. Rev. Bras. Cienc do Solo. 42: 1-12.
  32. Siripornadulsil S, Thanwisai L, Siripornadulsil W. 2014. Changes in the proteome of the cadmium-tolerant bacteria Cupriavidus taiwanensis KKU2500-3 in response to cadmium toxicity. Can J. Microbiol. 60: 121-131. https://doi.org/10.1139/cjm-2013-0713
  33. Taghavi S, Lesaulnier C, Monchy S, Wattiez R, Mergeay M, van der Lelie D. 2009. Lead(II) resistance in Cupriavidus metallidurans CH34: Interplay between plasmid and chromosomally-located functions. Antonie Van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 96: 171-182.
  34. Huang N, Mao J, Hu M, Wang X, Huo M. 2019. Responses to copper stress in the metal-resistant bacterium Cupriavidus gilardii CR3: a whole-transcriptome analysis. J. Basic Microbiol. 59: 446-457. https://doi.org/10.1002/jobm.201800693
  35. Chen WM, Wu CH, James EK, Chang JS. 2008. Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J. Hazard Mater. 151: 364-371. https://doi.org/10.1016/j.jhazmat.2007.05.082
  36. Minari GD, Saran LM, Constancio MTL, da Silva RC, Rosalen DL, de Melo WJ, et al. 2020. Bioremediation potential of new cadmium, chromium, and nickel-resistant bacteria isolated from tropical agricultural soil. Ecotoxicol. Environ. Saf. 204: 111038. https://doi.org/10.1016/j.ecoenv.2020.111038
  37. Li X, Yan Z, Gu D, Li D, Tao Y, Zhang D, et al. 2019. Characterization of cadmium-resistant rhizobacteria and their promotion effects on Brassica napus growth and cadmium uptake. J. Basic Microbiol. 59: 579-590. https://doi.org/10.1002/jobm.201800656
  38. Wang Q, Ma L, Zhou Q, Chen B, Zhang X, Wu Y, et al. 2019. Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency. Chemosphere 234: 769-776. https://doi.org/10.1016/j.chemosphere.2019.06.132
  39. Singh P, Kim YJ, Nguyen NL, Hoang VA, Sukweenadhi J, Farh MEA, et al. 2015. Cupriavidus yeoncheonense sp. nov., isolated from soil of ginseng. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 107: 749-758.
  40. Kuppusamy S, Thavamani P, Megharaj M, Lee YB, Naidu R. 2016. Polyaromatic hydrocarbon (PAH) degradation potential of a new acid tolerant, diazotrophic P-solubilizing and heavy metal resistant bacterium Cupriavidus sp. MTS-7 isolated from long-term mixed contaminated soil. Chemosphere 162: 31-39. https://doi.org/10.1016/j.chemosphere.2016.07.052
  41. Ledger T, Zuniga A, Kraiser T, Dasencich P, Donoso R, Perez-Pantoja D, et al. 2012. Aromatic compounds degradation plays a role in colonization of Arabidopsis thaliana and Acacia caven by Cupriavidus pinatubonensis JMP134. Antonie van Leeuwenhoek 101: 713-723. https://doi.org/10.1007/s10482-011-9685-8
  42. Kampfer P, Martin K, McInroy JA, Glaeser SP. 2015. Proposal of Novosphingobium rhizosphaerae sp. nov., isolated from the rhizosphere. Int. J. Syst. Evol. Microbiol. 65: 195-200. https://doi.org/10.1099/ijs.0.070375-0
  43. Krishnan R, Menon RR, Busse HJ, Tanaka N, Krishnamurthi S, Rameshkumar N. 2017. Novosphingobium pokkalii sp. nov, a novel rhizosphere-associated bacterium with plant beneficial properties isolated from saline-tolerant pokkali rice. Res. Microbiol. 168: 113-121. https://doi.org/10.1016/j.resmic.2016.09.001
  44. Islam MR, Sultana T, Joe MM, Yim W, Cho JC, Sa T. 2013. Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper. J. Basic Microbiol. 53: 1004-1015. https://doi.org/10.1002/jobm.201200141
  45. Vives-Peris V, Gomez-Cadenas A, Perez-Clemente RM. 2018. Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp. Plant Cell Rep. 37: 1557-1569. https://doi.org/10.1007/s00299-018-2328-z
  46. Chettri B, Singh AK. 2019. Kinetics of hydrocarbon degradation by a newly isolated heavy metal tolerant bacterium Novosphingobium panipatense P5:ABC. Bioresour. Technol. 294: 122190. https://doi.org/10.1016/j.biortech.2019.122190
  47. Liu X, Liu M, Chen X, Yang Y, Hou L, Wu S, et al. 2019. Indigenous PAH degraders along the gradient of the Yangtze Estuary of China: Relationships with pollutants and their bioremediation implications. Mar. Pollut. Bull. 142: 419-427. https://doi.org/10.1016/j.marpolbul.2019.03.064
  48. Segura A, Udaondo Z, Molina L. 2021. PahT regulates carbon fluxes in Novosphingobium sp. HR1a and influences its survival in soil and rhizospheres. Environ. Microbiol. 23: 2969-2991. https://doi.org/10.1111/1462-2920.15509
  49. Rodriguez-Conde S, Molina L, Gonzalez P, Garcia-Puente A, Segura A. 2016. Degradation of phenanthrene by Novosphingobium sp. HS2a improved plant growth in PAHs-contaminated environments. Appl. Microbiol. Biotechnol. 100: 10627-10636. https://doi.org/10.1007/s00253-016-7892-y
  50. Ke T, Zhang J, Tao Y, Zhang C, Zhang Y, Xu Y, et al. 2021. Individual and combined application of Cu-tolerant Bacillus spp. enhance the Cu phytoextraction efficiency of perennial ryegrass. Chemosphere 263: 127952. https://doi.org/10.1016/j.chemosphere.2020.127952
  51. Kamaruzzaman MA, Abdullah SRS, Hasan HA, Hassan M, Othman AR, Idris M. 2020. Characterisation of Pb-resistant plant growth-promoting rhizobacteria (PGPR) from Scirpus grossus. Biocatal. Agric. Biotechnol. 23: 101456. https://doi.org/10.1016/j.bcab.2019.101456
  52. Saharan BS, Verma S. 2014. Potential plant growth promoting activity of Bacillus licheniformis UHI(II)7. Int. J. Microb. Resour. Technol. 2: 22-27.
  53. Akhtar N, Ilyas N, Yasmin H, Sayyed RZ, Hasnain Z, Elsayed AE, et al. 2021. Role of Bacillus cereus in improving the growth and Phytoextractability of Brassica nigra (L.) K. koch in chromium contaminated soil. Molecules 26: 1569. https://doi.org/10.3390/molecules26061569
  54. Wang C, Liu Z, Huang Y, Zhang Y, Wang X, Hu Z. 2019. Cadmium-resistant rhizobacterium Bacillus cereus M4 promotes the growth and reduces cadmium accumulation in rice (Oryza sativa L.). Environ. Toxicol. Pharmacol. 72: 103265. https://doi.org/10.1016/j.etap.2019.103265
  55. Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, et al. 2010. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresour. Technol. 101: 8599-8605. https://doi.org/10.1016/j.biortech.2010.06.085
  56. Heidari P, Panico A. 2020. Sorption Mechanism and Optimization Study for the Bioremediation of Pb(II) and Cd(II) Contamination by Two Novel Isolated Strains Q3 and Q5 of Bacillus sp. Int. J. Environ. Res. Public Health 17: 4059. https://doi.org/10.3390/ijerph17114059
  57. Singh S, Kumar V, Sidhu GK, Datta S, Dhanjal DS, Koul B, et al. 2019. Plant growth promoting rhizobacteria from heavy metal contaminated soil promote growth attributes of Pisum sativum L. Biocatal. Agric. Biotechnol. 17: 665-671. https://doi.org/10.1016/j.bcab.2019.01.035
  58. Pandey S, Ghosh PK, Ghosh S, De TK, Maiti TK. 2013. Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J. Microbiol. 51: 11-17. https://doi.org/10.1007/s12275-013-2330-7
  59. Al-Sharidah A, Richardt A, Golecki JR, Dierstein R, Tadros MH. 2000. Isolation and characterization of two hydrocarbon-degrading Bacillus subtilis strains from oil contaminated soil of Kuwait. Microbiol. Res. 155: 157-164. https://doi.org/10.1016/S0944-5013(00)80029-4
  60. Kebria DY, Khodadadi A, Ganjidoust H, Badkoubi A, Amoozegar MA. 2009. Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel. Int. J. Environ. Sci. Technol. 6: 435-442. https://doi.org/10.1007/BF03326082
  61. Patowary K, Saikia RR, Kalita MC, Deka S. 2015. Degradation of polyaromatic hydrocarbons employing biosurfactant-producing Bacillus pumilus KS2. Ann. Microbiol. 65: 225-234. https://doi.org/10.1007/s13213-014-0854-7
  62. Yuniarti E, Dalmacio IF, Paterno ES. 2019. Heavy metal-resistant rhizobacteria from gold mine in Pongkor Indonesiaa and copper mine in Marinduque Philippines. J. ILMU Pertan. 31: 75-88.
  63. Huang Y, Li L. 2014. Biodegradation characteristics of naphthalene and benzene, toluene, ethyl benzene, and xylene (BTEX) by bacteria enriched from activated sludge. Water Environ. Res. 86: 277-284. https://doi.org/10.2175/106143013X13807328849495