DOI QR코드

DOI QR Code

Long-term Stability of Perovskite Solar Cells with Inhibiting Mass Transport with Buffer Layers

물질이동 억제 버퍼층 형성을 통한 페로브스카이트 태양전지 장기 안정성 확보

  • Bae, Mi-Seon (Department of Materials Science and Engineering, Chungnam National University) ;
  • Jeong, Min Ji (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Chang, Hyo Sik (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Yang, Tae-Youl (Department of Materials Science and Engineering, Chungnam National University)
  • 배미선 (충남대학교 신소재공학과) ;
  • 정민지 (충남대학교 에너지과학기술대학원) ;
  • 장효식 (충남대학교 에너지과학기술대학원) ;
  • 양태열 (충남대학교 신소재공학과)
  • Received : 2021.08.30
  • Accepted : 2021.09.17
  • Published : 2021.09.30

Abstract

Perovskite solar cells (PSCs) can be fabricated through solution process economically with variable bandgap that is controlled by composition of precursor solution. Tandem cells in which PSCs combined with silicon solar cells have potential to reach high power conversion efficiency over 30%, however, lack of long-term stability of PSCs is an obstacle to commercialization. Degradation of PSCs is mainly attributed to the mass transport of halide and metal electrode materials. In order to ensure the long-term stability, the mass transport should be inhibited. In this study, we confirmed degradation behaviors due to the mass transport in PSCs and designed buffer layers with LiF and/or SnO2 to improve the long-term stability by suppressing the mass transport. Under high-temperature storage test at 85℃, PSCs without the buffer layers were degraded by forming PbI2, AgI, and the delta phase of the perovskite material, while PSCs with the buffer layers showed improved stability with keeping the original phase of the perovskite. When the LiF buffer and encapsulation were applied to PSCs, superior long-term stability on 85℃-85% RH dump heat test was achieved; efficiency drop was not observed after 200 h. It was also confirmed that 90.6% of the initial efficiency was maintained after 200 hours of maximum power tracking test under AM 1.5G-1SUN illumination. Here, we have demonstrated that the buffer layer is essential to achieve long-term stability of PSCs.

페로브스카이트 태양전지는 용액공정으로 제작되어 공정 중 전구체 조성제어를 통해 밴드갭을 용이하게 조절할 수 있다. 탠덤 태양전지의 상부셀로 활용하여 실리콘 태양전지와 접합 시 30% 이상의 효율 달성이 가능하지만, 페로브스카이트 태양전지의 낮은 안정성이 상용화의 걸림돌로 작용하고 있다. 아이오딘 이온 및 전극 물질 확산이 주된 열화기구로 알려져 있어 장기 안정성을 확보하기 위해서는 이러한 이온 이동의 방지가 필요하다. 본 연구에서는 층간소재와 페로브스카이트 광활성층 사이의 이온이동에 의한 열화현상을 관찰하고, 이를 억제하기 위해 페로브스카이트 소재와 은전극 사이에 버퍼층을 도입하여 소자의 안정성을 확보하였다. 85℃에서 300시간 이상 보관 시 버퍼가 없는 소자는 페로브스카이트 층이 PbI2 및 델타상으로 변화하며 변색되었으며 AgI가 형성되는 것을 확인했다. LiF와 SnO2 버퍼 도입 시 이온이동 억제 효과를 통해 페로브스카이트 태양전지의 열안정성이 향상되었다. LiF버퍼층 적용 및 봉지를 한 소자는 85℃-85%RH damp heat 시험 200시간 후 효율감소가 발생하지 않았으며 추가로 AM 1.5G-1SUN 하에서 최대출력점을 추적하였을 때 200시간 후 초기 효율의 90% 이상 유지하는 것을 확인했다. 이 결과는 버퍼층 형성을 통한 층간 물질이동 억제가 장기안정성을 확보하기 위한 필요조건임을 보여준다.

Keywords

Acknowledgement

본 연구는 2020년도 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 신재생에너지기술개발사업(No. 20203040010320)과 2021년도 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(No. 2020R1F1A1069358) 연구 과제입니다.

References

  1. Y. Hou, E. Aydin, M. D. Bastiani, C. Xiao, F. H. Isikgor, D. J Xue, B. Chen, H. Chen, B. Bahrami, A. H. Chowdhury, A. Johnston, S. W. Baek, Z. Huang, M. Wei, Y. Dong, J. Troughton, R. Jalmood, A. J. Mirabelli, T. G. Allen, E. V. Kerschaver, M. I. Saidaminov, D. Baran, Q. Qiao, Kai Zhu, S. D. Wolf, E. H. Sargent, "Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon", Science, 367, 1135-1140 (2020). https://doi.org/10.1126/science.aaz3691
  2. M. Jost, L. Kegelmann, L. Korte, and S. Albrecht, "Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency", Advanced. Energy Materials, 10, 1904102 1-43 (2020). https://doi.org/10.1002/aenm.201904102
  3. J. Xu, C. C., Boyd, Z. J. Yu, A. F. Palmstrom, D. J. Witter, B. W. Larson, R. M. France, J. Werner, S. P. Harvey, E. J. Wolf,W. Weigand, S. Manzoor, M. F. A. M. van Hest, J. J. Berry, J. M. Luther, Z. C. Holman5, M. D. McGehee, "Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems", Science, 367, 1097-1104(2020). https://doi.org/10.1126/science.aaz5074
  4. D. H. Kim, H. J. Jung, I. J. Park, B. W. Larson, S. P. Dunfield, C. Xiao, J. K. Kim, J. H. Tong, P. Boonmongkolras, S. G. Ji, F. Zhang, S. R. Pae, M. K. Kim, S. B. Kang, V. Dravid, J. J. Berry, J. Y. Kim, K. Zhu, D. H. Kim, B. H. Shin, "Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites", Science, 368, 155-160 (2020). https://doi.org/10.1126/science.aba3433
  5. J. B. You, L. Meng, T. B. Song, T. F. Guo, Y. M. Yang, W. H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. S. Liu, N. D. Marco and Y. Yang, "Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers", Nature nanotechnology, 11, 75-81 (2016). https://doi.org/10.1038/nnano.2015.230
  6. M. T. Kam, Q. Zhang, D. Q. Zhang, Z. Y. Fan., "Room-temperature sputtered SnO2 as robust electron transport layer for air-stable and efficient perovskite solar cells on rigid and flexible substrates", Scientific reports, 9, 6963 1-10 (2019). https://doi.org/10.1038/s41598-019-42962-9
  7. T. Bu, J. Li, H. Li, C. C. Tian, J. Su, G. Tong, L. K. Ono, C. Wang, Z. Lin, N. Chai, X. L. Zhang, J. J. Chang, J. Lu, J. Zhong, W. Huang, Y. Qi, Y. B. Cheng, F. Huang, "Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules", Science, 372, 1327-1332 (2021). https://doi.org/10.1126/science.abh1035
  8. A. A. Ashouri, E. Kohnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J. A. Marquez, A. B. M. Vilches, E. Kasparavicius, J. A. Smith, N. Phung, D. Menzel, M. Grischek, L. Kegelmann, D. Skroblin, C. Gollwitzer, T. Malinauskas, M. Jost, G. Matic, B. Rech, R. Schlatmann, M. Topic, L. Korte, A. Abate, B. Stannowski, D. Neher, M. Stolterfoht, T. Unold, V. Getautis, S. Albrecht, "Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction", Science, 370, 1300-1309 (2020). https://doi.org/10.1126/science.abd4016
  9. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, & H. J. Snaith, "Efficient hybrid solar cells based on meso-super-structured organometal halide perovskites", Science, 338, 643-647 (2012). https://doi.org/10.1126/science.1228604
  10. D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval, S. Wheeler, J. R. Durrantab and S. A. Haque, "Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells", Energy&Environmental Science, 9, 1655-1660 (2016). https://doi.org/10.1039/c6ee00409a
  11. G. Y. Kim, A. Senocrate, T. Y. Yang, G. Gregori, M. Gratzel and J. Maier, "Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition", Nature materials, 17, 445-449 (2018). https://doi.org/10.1038/s41563-018-0038-0
  12. S. Yang, S. S. Chen, E. Mosconi, Y. J. Fang, X. Xiao, C. C. Wang, Y. Zhou, Z. Yu, J. J. Zhao, Y. Gao, F. D. Angelis, J. S. Huang, "Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts", Science, 365, 473-478 (2019). https://doi.org/10.1126/science.aax3294
  13. J. Liu, S. K. Pathak, N. Sakai, R. Sheng, S. Bai, Z. Wang, and Henry J. Snaith, " Identification and Mitigation of a Critical Interfacial Instability in Perovskite Solar Cells Employing Copper Thiocyanate Hole-Transporter", Advanced Material Interfaces, 3, 1600571 1-9 (2016). https://doi.org/10.1002/admi.201600571
  14. X. Li, S. Fu, W. Zhang, S. Ke, W. Song, J. Fang, "Chemical anti-corrosion strategy for stable inverted perovskite solar cells', Science Advances, 6, eabd1580 2-10 (2020). https://doi.org/10.1126/sciadv.abd1580
  15. I. Hwang, I. Jeong, J. Lee, M. J. Ko, & K. Yong, "Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation", ACS Appled Materials&Interfaces, 7, 17330-17336 (2015). https://doi.org/10.1021/acsami.5b04490
  16. H. Tan, A. Jain, O. Voznyy, X. Z. Lan, F. P. G. d. Arquer, J. Z. Fan, R. Q. Bermudez, M. Yuan, B. Zhang, Y. C. Zhao, F. Fan, P. Li, L. N. Quan, Y. B. Zhao, Z. H. Lu, Z. Yang, S. Hoogland, E. H. Sargent, "Efficient and stable solution-processed planar perovskite solar cells via contact passivation", Science, 355, 722-726 (2017). https://doi.org/10.1126/science.aai9081
  17. C. C. Boyd, R. Cheacharoen, K. A. Bush, R. Prasanna, T. Leijtens, and M. D. McGehee, "Barrier Design to Prevent Metal-Induced Degradation and Improve Thermal Stability in Perovskite Solar Cells", ACS Energy Letters, 3, 1772-1778 (2018). https://doi.org/10.1021/acsenergylett.8b00926
  18. M. Mohammadi, M. Eskandari, & D. Fathi, "Effects of the location and size of plasmonic nanoparticles (Ag and Au) in improving the optical absorption and efficiency of perovskite solar cells", Journal of Alloys and Compounds, 877, 160177 1-16 (2021). https://doi.org/10.1016/j.jallcom.2021.160177
  19. P. L. Qin, Q. He, C. Chen, X. L. Zheng, G. Yang, H. Tao, L. B. Xiong, L. Xiong, G. Li, and G. J. Fang, "High-Performance Rigid and Flexible Perovskite Solar Cells with Low-Temperature Solution-Processable Binary Metal Oxide Hole-Transporting Materials", Solar. RRL, 1, 1700058 1-10 (2017). https://doi.org/10.1002/solr.201700058
  20. W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. G. Seo, E. K. Kim, J. H. Noh, S. Il Seok, "Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells", Science, 356, 1376-1379 (2017). https://doi.org/10.1126/science.aan2301
  21. M. Thambidurai, F. Shini, P. C. Harikesh, N. Mathews, and C. Dang, "Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide", Journal of Power Sources, 9, 227362 3128-3134 (2016).
  22. S. You, H. Wang, S. Bi, J. Zhou, L. Qin, X. Qiu, Z. Zhao, Y. Xu, Y. Zhang, X. H. Shi, H. Zhou, and Z. Tang, "A Biopolymer Heparin Sodium Interlayer Anchoring TiO2 and MAPbI3 Enhances Trap Passivation and Device Stability in Perovskite Solar Cells", Advanced. Materials, 30, 1706924 1-8 (2018). https://doi.org/10.1002/adma.201706924
  23. S. J. Park,, S. G. Ji, & J. Y, Kim, "Inorganic charge transport materials for high reliable perovskite solar cells"(in korean), ceramist, 23(2), 31616 145-165 (2020).
  24. J. Wang, K. Datta, C. H. L. Weijtens, M. M. Wienk, & R. A. J. Janssen, "Insights into Fullerene Passivation of SnO2 Electron Transport Layers in Perovskite Solar Cells", Advanced Functional Materials, 29, 1905883 1-12 (2019). https://doi.org/10.1002/adfm.201905883
  25. J. P. C. Baena, M. Saliba, T. Buonassisi, M. Gratzel, A. Abate, W. Tress, A. Hagfeldt, "Promises and challenges of perovskite solar cells", Science, 358, 739-744 (2017). https://doi.org/10.1126/science.aam6323
  26. D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. K. B. Rech, M. B. Johnston, L. M. Herz, H. J. Snaith, "A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells", Science, 351, 151-155 (2016). https://doi.org/10.1126/science.aad5845
  27. S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, "Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells", Nano Letters, 14, 5561-5568 (2014). https://doi.org/10.1021/nl501982b
  28. I. J Zhao, Y. Deng, H. Wei, X. Z. Z. Yu, Y. Shao, J. E. Shield, J. Huang, "Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells", Science advances, 3, eaao5616 1-8 (2017). https://doi.org/10.1126/sciadv.aao5616
  29. S. J. Lee, S. S. Shin, Y. C. Kim, D. S. Kim, T. K. Ahn, J. H. Noh, J. W. Seo, and S. Il Seok, "Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2-Pyrazine Complex", Journal of the American Chemocal Society, 138, 3974-3977 (2016). https://doi.org/10.1021/jacs.6b00142
  30. K.O. Brinkmann, J. Zhao, N. Pourdavoud, T. Becker, T. Hu, S. Olthof, K. Meerholz, L. Hoffmann, T. Gahlmann, R. Heiderhoff, M.F. Oszajca, N.A. Luechinger, D. Rogalla, Y. Chen, B. Cheng & T. Riedl, "Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells", Nature Communication, 8, 13938 1-9 (2017). https://doi.org/10.1038/ncomms13938
  31. X. Liu, L. J. Guo and Y. H. Zheng, "5-nm LiF as an Efficient Cathode Buffer Layer in Polymer Solar Cells Through Simply Introducing a C60 Interlayer", Nanoscale Research Letters, 12, 543 1-7 (2017). https://doi.org/10.1186/s11671-017-2299-y
  32. G. E. Eperon, T. Leijtens, K. A. Bush, R. Prasanna, T. Green, J. T. W. Wang, D. P. McMeekin, G. Volonakis, R. L. Milot, R. May, A. Palmstrom, D. J. Slotcavage, R. A. Belisle, J. B. Patel, E. S. Parrott, R. J. Sutton, W. Ma, F. Moghadam, B. Conings, A. Babayigit, H. G. Boyen, S. Bent, F. Giustino, L. M. Herz, M. B. Johnston, M. D. McGehee, H. J. Snaith, "Perovskite-perovskite tandem photovoltaics with optimized band gaps", Science, 354, 861-865 (2016). https://doi.org/10.1126/science.aaf9717
  33. K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, "23.6%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells With Improved Stability", Nature Energy, 2, 17009 1-17 (2017). https://doi.org/10.1038/nenergy.2017.9
  34. S. J. Lee, T. Y. Yang, S. J. Lee, J. W. Seo and J. H. Noh, " 할로겐화물 페로브스카이트 태양전지"(in korean), 공업화학 전망, 20, 59-76 (2017)