DOI QR코드

DOI QR Code

3D 프린팅을 활용한 전동식 재활용 웨어러블 로봇 손 시스템의 설계 및 구현

Design and Implementation of Motor-Based Rehabilitation Wearable Robot Hand System using 3D Printing

  • 김현준 (상명대학교 휴먼지능로봇공학과) ;
  • 김정현 (상명대학교 휴먼지능로봇공학과) ;
  • 백수황 (상명대학교 휴먼지능로봇공학과)
  • 투고 : 2021.08.20
  • 심사 : 2021.10.17
  • 발행 : 2021.10.31

초록

본 논문은 3D프린터와 모터를 활용해 무게와 부피를 줄인 재활용 웨어러블 로봇 손의 설계 및 구현에 관한 연구이다. 재활용 웨어러블 로봇은 재활의 효과도 중요하지만, 사용의 간편성 또한 중요하다. 하지만 현재 연구 및 개발된 재활용 외골격 로봇은 부피와 무게가 무겁거나 제자리에서 사용해야 하는 것이 대부분이다. 따라서 착용에 용이하고 사용자에게 중량이 부담되지 않는 웨어러블 로봇이 필요하므로 경량화된 전동식 재활용 웨어러블 로봇 손을 제안하였다. 3D프린터를 사용하여 무게와 부피를 줄이고 착용에 용이하도록 설계를 진행하였다. 또한, 휴대성을 높이기 위해 공압 방식이 아닌 모터기반의 전동방식을 채택해 구조를 간단하게 구성하였다. 최종적으로 경량화된 전동식 재활용 웨어러블 로봇 손의 실험을 통해 제안한 방식의 효용성을 검토하였다.

This paper is a study on the design and implementation of a rehabilitation wearable robotic hand that reduces weight and volume by using a 3D printer and a motor. Rehabilitation wearable robots are important not only for the effect of rehabilitation but also for ease of use. However, most of the currently researched and developed rehabilitation exoskeleton robots are heavy in volume and weight, or they have to be used in place. Therefore, a wearable robot that is easy to wear and does not burden the user is required, so a lightweight electric rehabilitation wearable robot hand is proposed. A 3D printer was used to reduce the weight and volume and to make it easier to wear. In addition, to increase portability, the structure was simplified by adopting an electric method rather than a pneumatic method. Finally, the effectiveness was examined through the experiment of the lightweight electric rehabilitation wearable robot hand.

키워드

과제정보

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1061567).

참고문헌

  1. H. Kim, D. Koo, Y. Nam, K. Cho, and S. Kim, "Research on technology status and development direction of wearable robot," Fashion and Textile Research J., vol. 21, no. 5, Oct. 2019, pp. 640-655. https://doi.org/10.5805/SFTI.2019.21.5.640
  2. S. Yeem, J. Heo, H. Kim, and Y. Kwon, "Technical Analysis of Exoskeleton Robot," World J. of Engineering and Technology, vol. 7, no. 1, Feb. 2019, pp. 68-79. https://doi.org/10.4236/wjet.2019.71004
  3. N. Ho, K. Tong, X. Hu, K. Fung, X. Wei, W. Rong, and E. Susanto, "An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: Task training system for stroke rehabilitation," In Proc. IEEE Int. Conf. on Rehabilitation Robotics, Zurich, Switzerland, 2011, pp. 1-5.
  4. T. Butzer, O. Lambercy, J. Arata, and R. Gassert, "Fully wearable actuated soft exoskeleton for grasping assistance in everyday activities," Soft robotics, vol. 8, no. 2, Apr. 2021, pp. 128-143. https://doi.org/10.1089/soro.2019.0135
  5. P. Agarwal and A. Deshpande, "Subject-specific assist-as-needed controllers for a hand exoskeleton for rehabilitation," IEEE Robotics and Automation Letters, vol. 3, no. 1, Jan. 2018, pp. 508-515. https://doi.org/10.1109/lra.2017.2768124
  6. S. Park, C. Meeker, L. Weber, L. Bishop, J. Stein, and M. Ciocarlie, "Multimodal sensing and interaction for a robotic hand orthosis," IEEE Robotics and Automation Letters, vol. 4, no. 2, Apr. 2019, pp. 315-322. https://doi.org/10.1109/lra.2018.2890199
  7. B. Kang, H. Choi, H. Lee, and K. Cho, "Exo-glove poly II: a polymer-based soft wearable robot for the hand with a tendon-driven actuation system," Soft Robotics, vol. 6, no. 2, Apr. 2019, pp. 214-227. https://doi.org/10.1089/soro.2018.0006
  8. D. Kim and H. Park, "Cable actuated dexterous (CADEX) glove for effective rehabilitation of the hand for patients with neurological diseases," In Proc. 2018 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Madrid, Spain, Oct. 2018, pp. 2305-2310.
  9. J. Lee, H. Kim, J. Kim, J. Bae, and C. Ryu, "Remote control robot arm using leap motion sensor and bluetooth communication," J. of the Korea Institute of Electronic Communication Sciences, vol. 12. no. 6, Dec. 2017, pp. 1127-1134. https://doi.org/10.13067/JKIECS.2017.12.6.1127
  10. H. Kwon, H. Ko, Y. Song, E. Son, and B. Lee, "Knee rehabilitation system through EMG signal analysis and bldc motor control," J. of the Korea Institute of Electronic Communication Sciences, vol. 14. no. 5, Oct. 2019, pp. 1009-1018.
  11. H. Yoo, S. Mok, J. Kim, J. Baek, and Y. Ko, "Control technology based on the finger recognition of robot cleaners," J. of the Korea Institute of Electronic Communication Sciences, vol. 15. no. 1, Feb. 2020, pp. 139-146. https://doi.org/10.13067/JKIECS.2020.15.1.139