DOI QR코드

DOI QR Code

3D 프린터의 출력시간 단축과 재료소모량 감소를 통한 편의성 개선에 관한 연구

A Study on the Improvement of Convenience through Reduction of Printing Time and Material Consumption of 3D Printer

  • 김성연 (상명대학교 휴먼지능로봇공학과) ;
  • 김은찬 (상명대학교 휴먼지능로봇공학과) ;
  • 김희찬 (상명대학교 휴먼지능로봇공학과) ;
  • 남재욱 (상명대학교 휴먼지능로봇공학과) ;
  • 이상우 (상명대학교 휴먼지능로봇공학과) ;
  • 백수황 (상명대학교 휴먼지능로봇공학과)
  • 투고 : 2021.08.03
  • 심사 : 2021.10.17
  • 발행 : 2021.10.31

초록

3D 프린터는 개인의 창의력을 실제로 구현할 수 있는 장점이 있다. 이 특성을 활용하려는 사람들은 증가하고 있지만 적합한 프린팅 교육의 기회 부족과 잘못된 출력 방법으로 문제 발생의 어려움을 겪는다. 따라서 저하된 출력물 품질이 사용자의 관심을 낮춰 점차 3D 프린터의 활용빈도 수를 감소시키게 된다. 본 연구에서는 3D 프린터의 오작동 해결과 편의성의 개선을 위해 직접 기기를 작동하면서 발생하는 문제를 파악하고 분석했다. 여러 문제점 중 안착 불량, 스트링 현상, 노즐 막힘을 중점으로 해결과 완화 연구를 진행하였다. 또한, 3D 프린터의 기능을 실험을 통해 재료소모량 감소와 출력시간 단축 방법을 고찰했다. 최종적으로 3D 프린팅 중 빈번하게 발생하는 출력문제를 해결해 외관이 온전한 출력물을 얻을 수 있었고 편의성을 개선하였다.

3D printing has the advantage of providing opportunities for individuals to truly realize their creativity. An increasing number of people want to take advantage of this feature but they have lack opportunities for suitable printing training and struggle with problems with incorrect printing methods. Therefore, the lowered print quality lowers the interest of the user, and the 3D printer is not used gradually. In this study, we directly operate the device by identifying and analyzing the problems occurred to solve malfunctions of 3D printers and improve the convenience for user. In particular, we are conducting research on solving and mitigating problems with seating, stringing and nozzle clogging. In addition, the method of reducing material consumption and shortening the printing time was considered through experiments on the functions of 3D printers. Finally, by solving the printing problem that occurs frequently during 3D printing, it was possible to obtain a printed product with a complete appearance and improved convenience.

키워드

과제정보

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1061567).

참고문헌

  1. J. Park, "Correlation analysis of product element and user experience according to utilization of 3D printing," J. of Integrated Design Research, vol. 19, no. 1, Mar. 2020, pp. 91-108. https://doi.org/10.21195/JIDR.2020.19.1.006
  2. C. R. Hatz, B. Msallem, S. Aghlmandi, P. Brantner, and F. M. Thieringer, "Can an entry-level 3D printer create high-quality anatomical models Accuracy assessment of mandibular models printed by a desktop 3D printer and a professional device," Int. J. of Oral and Maxillofacial Surgery, vol. 49 no. 1, Jan. 2020, pp. 143-148. https://doi.org/10.1016/j.ijom.2019.03.962
  3. M. Kim, M. Kim, and Y. You, "Food 3D printing technology and food material of 3D printing," Clean Techology, vol. 26, no. 2, 2020, pp. 109-115.
  4. S. Lee, "Prospect for 3D printing technology in medical, dental, and pediatric dental field," J. of The Korean Academy of Pediatric Dentistry, vol. 43, no. 1, 2016, pp. 93-108. https://doi.org/10.5933/JKAPD.2016.43.1.93
  5. N. Sathishkumar, A. S. M. Udayakumar, B. Vincent, and V. A. Kumar, "Study and analysis of 3D printed FDM components by non-destructive testing techniques," Int. J. of Research and Review, vol. 7, no. 5, 2020, pp. 217-222.
  6. S. Dul, L. Fambri, and A. Pegoretti, "Fused deposition modeling with ABS-graphene nanocomposites," Composites Part A: Applied Science and Manufacturng, vol. 85, 2016, pp. 181-191. https://doi.org/10.1016/j.compositesa.2016.03.013
  7. S. Park, J. Park, H. Lee, and N. Lee, "Current status of biomedical applications using 3D printing technology," J. of the Korean Society of Precision Engineering, vol. 31, no. 12, 2014, pp. 1067-1076. https://doi.org/10.7736/KSPE.2014.31.12.1067
  8. Y. Kim, K. Kim, and C. Lee, "Accuracy improvement of output in pojection sereolithography by optimizing projection resolution," J. of the Korean Society of Manufacturing Technology Engineers, vol. 24, no. 6, 2015, pp. 710-717. https://doi.org/10.7735/ksmte.2015.24.6.710
  9. D. Jang, H. Lee, and J. Oh, "Design of individual 3D printer remote safety and quality management system based on IoT beacon," J. of the Korea Institute of Electronic Communication Science, vol. 15, no. 2, Apr. 2020, pp. 225-230. https://doi.org/10.13067/JKIECS.2020.15.2.225
  10. D. Jang, H. Lee, and J. Oh, "Design of IoT system for 3D printer multi-management," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 4, Aug. 2020, pp. 759-764. https://doi.org/10.13067/JKIECS.2020.15.4.759
  11. W. Kim and S. Lee, "Structural design of 3D printer nozzle with superior heat dissipation characteristics for deposition of materials with high melting point," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 2, Apr. 2020, pp. 313-318. https://doi.org/10.13067/JKIECS.2020.15.2.313
  12. H. Jeon, J. Park, S. Kim, K. Park, and C. Yoon, "Effect of nozzle temperature on the emission rate of ultrafine particles during 3D printing," Indoor Air, vol. 30 no. 2, Mar. 2020, pp. 306-314. https://doi.org/10.1111/ina.12624
  13. N. Shahrubudin, T. Lee, and R. Ramlan, "An overview on 3D printing technology: technological, materials, and applications," Procedia Manufacturing, vol. 35, 2019, pp. 1286-1296. https://doi.org/10.1016/j.promfg.2019.06.089
  14. S. Choi and S. Hwang, "3D printing design for minimizing flection phenomenon," J. of the Korea Institute of Electronic Communication Sciences, vol. 9, no. 12, Dec. 2014, pp. 1415-1420. https://doi.org/10.13067/JKIECS.2014.9.12.1415