DOI QR코드

DOI QR Code

Blast Analysis and Damage Evaluation for Reinforced Concrete Building Structures

RC Building 구조물의 폭발해석 및 손상평가

  • 박양흠 (금오공과대학교 토목공학과) ;
  • 윤성환 (한국도로공사 도로교통연구원 구조물연구실) ;
  • 장일영 (금오공과대학교 토목공학과)
  • Received : 2021.02.09
  • Accepted : 2021.03.04
  • Published : 2021.08.01

Abstract

The blast damage behavior of reinforced concrete (RC) structures exposed to unexpected extreme loading was investigated. To enhance the accuracy of numerical simulation for blast loading on RC structures with seven blast points, the calculation of blast loads using the Euler-flux-corrected-transport method, the proposed Euler-Lagrange coupling method for fluid-structure interaction, and the concrete dynamic damage constitutive model including the strain rate-dependent strength and failure models was implemented in the ANSYS-AUTODYN solver. In the analysis results, in the case of 20 kg TNT, only the slab member at three blast points showed moderate and light damage. In the case of 100 kg TNT, the slab and girder members at three blast points showed moderate damage, while the slab member at two blast points showed severe damage.

본 논문은 비예측 극한하중인 폭발하중에 노출된 RC building 구조물의 폭발손상평가를 위한 수치해석적 연구이다. 수치해석의 효율성 및 정확성을 높이기 위해, 폭발하중에 대한 정의, 유체-구조 연성을 위한 Euler-Lagrange 커플링 기법 적용, 그리고 고변형률 속도가 고려된 콘크리트 및 강재 재료구성모델이 제안된다. 특히 효율적인 폭발하중 정의를 위해, Euler-FCT 기법을 통하여 TNT 질량에 따른 시간별 압력하중 데이터가 확보되고, 이는 RC building 구조물 총 7 지점의 폭발위치에 적용되며, ANSYS-AUTODYN 솔버에 연결되어 수치 시뮬레이션이 수행된다. 해석결과, TNT 질량 및 폭발 위치에 따라 손상 차이가 발생하였으며, 먼저 TNT 질량 20 kg 일 경우 3 곳의 폭발손상 지점에서 주부재 중 슬래브에서만 중간 및 가벼운 손상이 발생되었고, TNT 질량 100 kg 일 경우 5 곳의 폭발손상 지점 중 3 곳은 슬래브 및 보 부재에서 중간 손상이 발생되었으며, 2 곳은 슬래브에서 심각한 손상이 발생되었다.

Keywords

References

  1. American Society of Civil Engineers (ASCE) (1999). Structural design for physical security: State of the Practice, American Society of Civil Engineers, USA.
  2. ANSYS-AUTODYN (2005). Theory manual revision 4.3., Century Dynamics Inc., USA.
  3. Bulson, P. S. (1997). Explosive loading of engineering structures, E & FN SPON.
  4. Dohrmann, C. R., Key, S. W. and Heinstein, M. W. (2000). "A method for connecting dissimilar finite element meshes in two dimensions." International Journal for Numerical Methods in Engineering, Vol. 48, No. 5, pp. 655-678. https://doi.org/10.1002/(SICI)1097-0207(20000620)48:5<655::AID-NME893>3.0.CO;2-D
  5. Draganic, H. and Varevac, D. (2018). "Analysis of blast wave parameters depending on air mesh size." Shock and Vibration, Vol. 2018, pp. 1-18. https://doi.org/10.1155/2018/3157457
  6. Gebbeken, N. and Ruppert, M. (2000). "A new material model for concrete in high-dynamic hydrocode simulations." Archive of Applied Mechanics, Vol. 70, No. 7, pp. 463-478. https://doi.org/10.1007/s004190000079
  7. Hetherington, J. G. and Smith, P. D. (1994). Blast and ballistic loading of structures, Butterworth-Heinemann, Washington, DC, USA.
  8. Johnson, G. R. and Cook, W. H. (1983). "A constitutive modeling and data for metals subjected to large strain-rates and high temperatures." Proceedings of 7th International Symposium on ballistics, Hague, Netherlands, pp. 541-577.
  9. Lu, Y. and Wang, Z. (2006). "Characterization of structural effects from above-ground explosion using coupled numerical simulation." Computers & Structures, Vol. 84, No. 28, pp. 1729-1742. https://doi.org/10.1016/j.compstruc.2006.05.002
  10. Nam, J. W., Kim, J. H. J., Kim, S. B., Yi, N. H. and Byun, K .J. (2008). "A study on mesh size dependency of finite element blast structural analysis induced by non-uniform pressure distribution from high explosive blast wave." KSCE Journal of Civil Engineering, KSCE, Vol. 12, No. 4, pp. 259-265. https://doi.org/10.1007/s12205-008-0259-x
  11. Riedel, W., Thoma, K. and Hiermaier, S. (1999). "Numerical analysis using a new macroscopic concrete model for hydrocodes." Proceedings of 9th International Symposium on Interaction of the Effects of Munitions with Structures, ISIEMS, Berlin, pp. 315-322.
  12. Tham, C. (2009). "Numerical simulation on the interaction of blast waves with a series of aluminum cylinders at near-field." International Journal of Impact Engineering, Vol. 36, No. 1, pp. 122-131. https://doi.org/10.1016/j.ijimpeng.2007.12.011
  13. TM5-1300/AFM 88-22/NAVFAC P-397 (1990). Structures to resist the effect of accidental explosions, Joint Departments of the Army, Air Force and Navy Washington, DC, USA.
  14. Von Neumann, J. and Richtmyer, R. D. (1950). "A method for the numerical calculation of hydrodynamic shocks." Journal of Applied Physics, Vol. 21, pp. 232-237. https://doi.org/10.1063/1.1699639
  15. Yun, S. H. and Park, T. H. (2013). "Multi-physics blast analysis of reinforced high strength concrete." KSCE Journal of Civil Engineering, KSCE, Vol. 17, No. 4, pp. 777-788. https://doi.org/10.1007/s12205-013-0093-7
  16. Zalesak, S. T. (1979). "Fully multidimensional flux-corrected transport algorithms for fluids." Journal of Computational Physics, Vol. 31, No. 3, pp. 335-362. https://doi.org/10.1016/0021-9991(79)90051-2