DOI QR코드

DOI QR Code

Monte Carlo simulations of chromium target under proton irradiation of 17.9, 22.3 MeV

  • Kara, A. (Department of Electrical and Electronics Engineering, Giresun University) ;
  • Yilmaz, A. (Department of Electrical and Electronics Engineering, Giresun University) ;
  • Yigit, M. (Department of Physics, Aksaray University)
  • Received : 2020.11.10
  • Accepted : 2021.04.27
  • Published : 2021.10.25

Abstract

Chromium material is commonly used for fusion plasma facing applications because of the low neutron activation property. The Monte Carlo method is one of the useful ways to investigate the ion-target interactions. In this study, Chromium target irradiated by protons was investigated using Monte Carlo based simulation tools. In this context, the calculations of radiation damage on Chromium material irradiated with protons at 17.9 and 22.3 MeV energies were carried out using GEANT4 and SRIM codes. Besides, the cross sections for proton interaction with Chromium target were calculated by the TALYS 1.9 code using CTM + FGM, BSFGM, and GSFM level densities. As a result, GEANT4, SRIM and TALYS 1.9 codes provide a suitable tool for the predictions of radiation damage and cross cross section with proton irradiation.

Keywords

Acknowledgement

This work was partially supported by the Giresun University Scientific Research Projects Coordination Department under the project Grant no. FEN-BAP-A-250221-49.

References

  1. M. Yigit, E. Tel, Theoretical determination of (d,n) and (d, 2n) excitation functions of some structural fusion materials irradiated by deuterons, Nucl. Sci. Tech. 28 (2017) 165, https://doi.org/10.1007/s41365-017-0316-6.
  2. M. Yigit, Investigating the (p,n) excitation functions on 104-106,108,110pd isotopes, in: Applied Radiation and Isotopes, vol. 130, 2017, pp. 109-114, https://doi.org/10.1016/j.apradiso.2017.09.027. URL:http://www.sciencedirect.com/science/article/pii/S0969804317309326.
  3. H. Korkut, T. Korkut, A. Kara, M. Yigit, E. Tel, Monte Carlo simulations of 17.9-22.3 mev energetic proton irradiation effects on bcc-zirconium fusionic materials, J. Fusion Energy 35 (2016) 591-596, https://doi.org/10.1007/s10894-016-0068-z. doi:10.1007/s10894-016-0068-z. URL:.
  4. M. Yigit, A. Kara, Model-based predictions for nuclear excitation functions of neutron-induced reactions on 64, 66-68 zn targets, Nucl. Eng.Technol 49 (2017) 996-1005, https://doi.org/10.1016/j.net.2017.03.006. URL:http://www.sciencedirect.com/science/article/pii/S173857331730061X.
  5. M. Yigit, M.E. Korkmaz, On the behavior of cross-sections of charged particle-induced reactions of 181ta target, Mod. Phys. Lett. 33 (2018) 1850155, https://doi.org/10.1142/s0217732318501559.
  6. O. Noori-kalkhoran, M. Gei, Evaluation of neutron radiation damage in zircaloy fuel clad of nuclear power plants: a study based on pka and dpa calculations, Prog. Nucl. Energy 118 (2020) 103079, https://doi.org/10.1016/j.pnucene.2019.103079. URL:http://www.sciencedirect.com/science/article/pii/S0149197019301805.
  7. S. Agostinelli, J. Allison, K. Amako, et al., Geant4-a simulation toolkit, in: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 506, 2003, pp. 250-303, https://doi.org/10.1016/S0168-9002(03)01368-8. URL:http://www.sciencedirect.com/science/article/pii/S0168900203013688.
  8. J. Allison, K. Amako, J. Apostolakis, et al., Recent developments in geant4, in: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 835, 2016, pp. 186-225, https://doi.org/10.1016/j.nima.2016.06.125. URL:http://www.sciencedirect.com/science/article/pii/S016890016306957.
  9. J.F. Ziegler, Srim-2003 (Proceedings of the Sixteenth International Conference on Ion Beam Analysis). Nuclear Instruments And Methods In Physics Research Section B: Beam Interactions With Materials And Atoms, 219-220, 1027 - 1036, 2004, https://doi.org/10.1016/j.nimb.2004.01.208. URL:http://www.sciencedirect.com/science/article/pii/S0168583X04002587.
  10. J.F. Ziegler, M. Ziegler, J. Biersack, Srim e the stopping and range of ions in matter, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268 (2010) 1818-1823, https://doi.org/10.1016/j.nimb.2010.02.091. URL:http://www.sciencedirect.com/science/article/pii/S0168583X10001862.
  11. A. Koning, S. Hilaire, S. Goriely, User manual of talys-1.9, URL: http://talys.eu/download-talys/, 2017.
  12. M. Sadeghi, N. Zandi, M. Bakhtiari, Nuclear model calculation for cyclotron production of 61cu as a PET imaging, J. Radioanal. Nucl. Chem. 292 (2011) 777-783, https://doi.org/10.1007/s10967-011-1557-1.
  13. L. Mokhtari Oranj, T. Kakavand, M. Sadeghi, M. Aboudzadeh Rovias, Monte Carlo fluka code simulation for study of 68ga production by direct proton-induced reaction, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 677 (2012) 22-24, https://doi.org/10.1016/j.nima.2012.02.029. URL: https://www.sciencedirect.com/science/article/pii/S0168900212002227.
  14. M. Sadeghi, N. Jokar, T. Kakavand, H. Ghafoori Fard, C. Tenreiro, Prediction of 67ga production using the Monte Carlo code mcnpx, Appl. Radiat. Isot. 77 (2013) 14-17, https://doi.org/10.1016/j.apradiso.2013.02.001. URL: https://www.sciencedirect.com/science/article/pii/S0969804313000481.
  15. L. Deilami-nezhad, L. Moghaddam-Banaem, M. Sadeghi, M. Asgari, Production and purification of scandium-47: a potential radioisotope for cancer theranostics, Appl. Radiat. Isot. 118 (2016) 124-130, https://doi.org/10.1016/ j.apradiso.2016.09.004. URL:https://www.sciencedirect.com/science/article/pii/S0969804316306649.
  16. M. Sharifian, M. Sadeghi, B. Alirezapour, Utilization of geant to calculation of production yield for 89zr by charge particles interaction on 89y, natzr and natsr, Appl. Radiat. Isot. 127 (2017) 161-165, https://doi.org/10.1016/j.apradiso.2017.06.005. URL:https://www.sciencedirect.com/science/article/pii/S0969804317304232.
  17. W. Hauser, H. Feshbach, The inelastic scattering of neutrons, Phys. Rev. 87 (1952) 366-373, https://doi.org/10.1103/PhysRev.87.366. URL:https://link.aps.org/doi/10.1103/PhysRev.87.366.
  18. J.J. Griffin, Statistical model of intermediate structure, Phys. Rev. Lett. 17 (1966) 478-481, https://doi.org/10.1103/PhysRevLett.17.478. URL:https://link.aps.org/doi/10.1103/PhysRevLett.17.478.
  19. A. Gilbert, A.G.W. Cameron, A composite nuclear-level density formula with shell corrections, Can. J. Phys. 43 (1965) 1446-1496, https://doi.org/10.1139/p65-139.
  20. W. Dilg, W. Mannhart, E. Steichele, P. Arnold, Precision neutron total cross section measurements on gold and cobalt in the 40 ?eV-5 meV range, Zeitschrift fur Physik 264 (1973) 427-444, https://doi.org/10.1007/bf01391712.
  21. A.V. Ignatyuk, J.L. Weil, S. Raman, S. Kahane, Density of discrete levels in 116Sn, Phys. Rev. C 47 (1993) 1504-1513, https://doi.org/10.1103/PhysRevC.47.1504. URL:https://link.aps.org/doi/10.1103/PhysRevC.47.1504.
  22. M. Yigit, A review of (n,p) and (n, a) nuclear cross sections on palladium nuclei using different level density models and empirical formulas, Appl. Radiat. Isot. 140 (2018) 355-362, https://doi.org/10.1016/j.apradiso.2018.08.004.
  23. M. Yigit, A. Kara, Simulation study of the proton-induced reaction cross sections for the production of 18F and 66-68Ga radioisotopes, J. Radioanal. Nucl. Chem. 314 (2017) 2383-2392, https://doi.org/10.1007/s10967-017-5613-3.
  24. M. Yigit, Analysis of cross sections of (n,t) nuclear reaction using different empirical formulae and level density models, Appl. Radiat. Isot. 139 (2018) 151-158, https://doi.org/10.1016/j.apradiso.2018.05.008.
  25. M. Yigit, Study of cross sections for (n,p) reactions on Hf, Ta and W isotopes, Appl. Radiat. Isot. 174 (2021) 109779, https://doi.org/10.1016/j.apradiso.2021.109779.
  26. M. Yigit, Investigation of (n,2n) reaction cross sections on Pd and Cd isotopes using equilibrium and pre-equilibrium models, Appl. Radiat. Isot. 166 (2020) 109399, https://doi.org/10.1016/j.apradiso.2020.109399.
  27. M. Yigit, Study on (n,p) reactions of 58,60,61,62,64Ni using new developed empirical formulas, Nucl. Eng. Technol. 52 (2020) 791-796, https://doi.org/10.1016/j.net.2019.10.009.
  28. M. Yigit, Theoretical study of cross sections of proton-induced reactions on cobalt, Nucl. Eng. Technol. 50 (2018) 411-415, https://doi.org/10.1016/j.net.2018.01.008.