DOI QR코드

DOI QR Code

Studies on the effect of thermal shock on crack resistance of 20MnMoNi55 steel using compact tension specimens

  • Thamaraiselvi, K. (Academy of Scientific and Innovative Research (AcSIR)) ;
  • Vishnuvardhan, S. (Academy of Scientific and Innovative Research (AcSIR))
  • Received : 2020.10.15
  • Accepted : 2021.03.30
  • Published : 2021.09.25

Abstract

One of the major factors affecting the life span of a Reactor Pressure Vessel (RPV) is the Pressurised Thermal Shock (PTS). PTS is a thermo-mechanical load on the RPV wall due to steep temperature gradients and structural load created by internal pressure of the fluid within the RPV. Safe operating life of a nuclear power plant is ensured by carrying out fracture analysis of the RPV against thermal shock. Carrying out fracture tests on RPV/large scale components is not always feasible. Hence, studies on laboratory level specimens are necessary to validate and supplement the prototype results. This paper aims to study the fracture behaviour of standard Compact Tension [C(T)] specimens, made of RPV steel 20MnMoNi55, subjected to thermal shock through experimental and numerical investigations. Fracture tests have been carried out on the C(T) specimens subjected to thermal transient load and tensile load to quantify the effect of thermal shock. Crack resistance curves are obtained from the fracture tests as per ASTM E1820 and compared with those obtained numerically using XFEM and a good agreement was found. A quantitative study on the crack tip plastic zone, computed using cohesive segment approach, from the numerical analyses justified the experimental crack initiation toughness.

Keywords

Acknowledgement

The authors thank the Director and Advisor (Management), CSIR-SERC, Chennai for their valuable guidance, encouragement and support in the R&D activities. The assistance rendered by the technical staff of Fatigue & Fracture Laboratory, CSIR-SERC in carrying out the experiments is gratefully acknowledged.

References

  1. G. Qian, M. Niffenegger, Integrity analysis of a reactor pressure vessel subjected to pressurized thermal shocks by considering constraint effect, Eng. Fract. Mech. 112-113 (2013) 14-25, https://doi.org/10.1016/j.engfracmech.2013.09.009.
  2. International Atomic Energy Agency, Pressurized Thermal Shock in Nuclear Power Plants: Good Practices for Assessment, IAEA, Vienna, 2010.
  3. C.E. Pugh, B.R. Bass, A Review of Large-Scale Fracture Experiments Relevant to Pressure Vessel Integrity under Pressurized Thermal Shock Conditions, NUREG/CR-ORNL/TM-2000/360, TN, USA, 2000.
  4. R.D. Cheverton, J.W. Bryson, D.J. Alexander, T. Slot, Thermal-shock experiments with flawed clad cylinders, Nucl. Eng. Des. 124 (1990) 109-119, https://doi.org/10.1016/0029-5493(90)90357-4.
  5. B.R. Bass, C.E. Pugh, J. Sievers, H. Schulz, Overview of the international comparative assessment study of pressurized thermal-shock in reactor pressure vessels (RPV PTS ICAS), Int. J. Pres. Ves. Pip. 78 (2001) 197-211, https://doi.org/10.1016/S0308-0161(01)00030-8.
  6. R.C. Hurst, J.B. Wintle, B. Hemsworth, in: A.S. Rao, R.B. Duffey, R.B. Duffey, D. Elias (Eds.), NESC: the Network for Evaluating Steel Components, American Society of Mechanical Engineers, New York, 1996.
  7. L. Stumpfrock, E. Roos, H. Huber, U. Weber, Fracture mechanics investigations on cylindrical large scale specimens under thermal shock loading, Nucl. Eng. Des. 144 (1993) 31-44, https://doi.org/10.1016/0029-5493(93)90006-U.
  8. Y. Mishima, S. Ishino, M. Ishikawa, H. Okamura, G. Yagawa, T. Hidaka, T. Yamamoto, J. Sanoh, K. Koyama, M. Iida, Y. Urabe, M. Sato, M. Tomimatsu, PTS integrity study in Japan, Int. J. Pres. Ves. Pip. 58 (1994) 91-101, https://doi.org/10.1016/0308-0161(94)90012-4.
  9. L. Hodulak, J.G. Blauel, D. Siegele, B. Urich, Thermal shock experiments on cracked cladded plates, Nucl. Eng. Des. 188 (1999) 139-147, https://doi.org/10.1016/S0029-5493(99)00021-7.
  10. S. Chapuliot, M.H. Lacire, S. Marie, M. Nedelec, Thermomechanical analysis of thermal shock fracture in the brittle/ductile transition zone. Part I: description of tests, Eng. Fract. Mech. 72 (2005) 661-673, https://doi.org/10.1016/j.engfracmech.2004.07.005.
  11. M. Reytier, S. Chapuliot, S. Marie, M. Nedelec, Thermomechanical analysis of thermal shock fracture in the brittle/ductile transition zone - Part II: numerical calculations and interpretation of the test results, Eng. Fract. Mech. 73 (2006) 283-295, https://doi.org/10.1016/j.engfracmech.2004.07.016.
  12. A.K. Pawar, J. Chattopadhyay, B.K. Dutta, K.K. Vaze, Safety demonstration of RPV under PTS conditions using cruciform type specimens, in: Struct. Mech. React. Technol. SMiRT-22, IASMiRT, San Francisco, 2013, p. 406.
  13. M. Chen, F. Lu, R. Wang, A. Ren, Structural integrity assessment of reactor pressure vessel under the pressurized thermal shock loading, Nucl. Eng. Des. 272 (2014) 84-91, https://doi.org/10.1016/j.nucengdes.2015.08.020.
  14. R. Mukin, I. Clifford, H. Ferroukhi, M. Niffenegger, Pressurized thermal shock (PTS) transient scenarios screening analysis with TRACE, Int. Conf. Nucl. Eng. Proceedings, ICONE. 6A (2018), https://doi.org/10.1115/ICONE26-81749.
  15. IS: 8811, Method for Emission Spectrometric Analysis of Plain Carbon and Low Alloy Steels Point to Plane Technique, Bureau of Indian Standard, New Delhi, 1998.
  16. ASTM E8/E8M, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, Tokyo, 2011.
  17. ASTM E1820, Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, PA, 2018.
  18. ASTM 1921, Standard Test Method for Determination of Reference Temperature, to, for Ferritic Steels in the Transition Range, ASTM International, West Conshohocken, PA, 2017.
  19. L.C. Wang, S.C. Jeng, N.M. Chung, Results of small break LOCA analysis for Kuosheng nuclear power plant using the RELAP5YA computer code, in: 4th Int. Top. Meet. Nucl. Therm. Hydraul. Oper. Saf., Taiwan, 1994, pp. 1-6.
  20. A.H. Khan, A.K. Ghosh, M.S. Rahman, S.M.T. Ahmed, C.L. Karmakar, An investigation on the possible radioactive contamination of environment during a steam-Line break accident in a VVER-1200 nuclear power plant, Curr. World Environ. 14 (2019) 299-311, https://doi.org/10.12944/cwe.14.2.14.
  21. X.K. Zhu, B.N. Leis, J.A. Joyce, Experimental estimation of JR curves from load-CMOD record for SE(B) specimens, J. ASTM Int. (JAI) 5 (2008) 76-91, https://doi.org/10.1007/978-981-10-6002-1_3.
  22. J.G. Blauel, L. Hodulak, T. Hollstein, B. Voss, Material characterization by J-R curves of a 20MnMoNi55 Forging, Int. J. Pres. Ves. Pip. 17 (1984) 139-162. https://doi.org/10.1016/0308-0161(84)90066-8
  23. H.S. Nam, J.S. Kim, H.W. Ryu, Y.J. Kim, J.W. Kim, Numerical ductile tearing simulation of circumferential cracked pipe tests under dynamic loading conditions, Nucl. Eng. Technol. 48 (2016) 1252-1263, https://doi.org/10.1016/j.net.2016.03.012.
  24. X. Li, Z. Ding, C. Liu, S. Bao, H. Qian, Y. Xie, Z. Gao, Effects of temperature on the local fracture toughness behavior of Chinese SA508-III welded joint, Nucl. Eng. Technol. 52 (2020) 1732-1741, https://doi.org/10.1016/j.net.2020.01.020.
  25. H.Y. Li, Y.H. Li, X.F. Wang, J.J. Liu, P.L. Xiao, Effect of quenching process on mechanical properties and ductile-brittle transition behavior of 28CrMnMoV steel, J. Cent. South Univ. 20 (2013) 1456-1461, https://doi.org/10.1007/s11771-013-1634-4.
  26. S. Bhowmik, P. Sahoo, S.K. Acharyya, S. Dhar, J. Chattopadhyay, Evaluation and effect of loss of constraint on master curve reference temperature of 20MnMoNi55 steel, Eng. Fract. Mech. 136 (2015) 142-157, https://doi.org/10.1016/j.engfracmech.2015.01.022.
  27. NUREG/CR-5493, Influence of Fluence Rate on Radiation-Induced Mechanical Property Changes in Reactor Pressure Vessel Steels, US NRC, 1990.
  28. I.S. Kim, S.S. Kang, Dynamic strain aging in SA508-class 3 pressure vessel steel, Int. J. Pres. Ves. Pip. 62 (1995) 123-129, https://doi.org/10.1016/0308-0161(95)93969-C.
  29. K.G. Samuel, O. Gossmann, H. Huthmann, Temperature dependence of fracture toughness (J-R-curves) of a modified type 316L austenitic stainless steel, Int. J. Pres. Ves. Pip. 41 (1990) 59-74, https://doi.org/10.1016/0308-0161(90)90077-U.
  30. M.S. El-Fadaly, T.A. ElSarrage, A.M. Eleiche, W. Dahl, Fracture toughness of 20MnMoNi55 steel at different temperatures as affected by room-temperature pre-deformation, J. Mater. Process. Technol. 54 (1995) 159-165, https://doi.org/10.1016/0924-0136(95)01936-7.
  31. D. Datta, Introduction to eXtended Finite Element (XFEM) Method, France, 2013. http://arxiv.org/abs/1308.5208.
  32. S. Mohammadi, Extended Finite Element Method for Fracture Analysis of Structures, Blackwell Publishing Limited, Hoboken, 2008.
  33. T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, third ed., Taylor & Francis, New York, 2005 https://doi.org/10.1007/978-1-4612-1740-4. NY.
  34. S.K. Kudari, K.G. Kodancha, Effect of specimen thickness on plastic zone, 17th eur. Conf. Fract. 2008 multilevel approach to fract, Mater. Components Struct 1 (2008) 530-538.