DOI QR코드

DOI QR Code

An investigation on the improvement of neutron radiography system of the Tehran research reactor by using MCNPX simulations

  • Amini, Moharram (Faculty of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic)) ;
  • Zamzamian, Seyed Mehrdad (Department of Energy Engineering, Sharif University of Technology) ;
  • Fadaei, Amir Hossein (Faculty of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic)) ;
  • Gharib, Morteza (Faculty of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic)) ;
  • Feghhi, Seyed Amir Hosein (Department of Radiation Application, Shahid Beheshti University G.C)
  • Received : 2020.11.21
  • Accepted : 2021.04.11
  • Published : 2021.10.25

Abstract

Applying the available neutron flux for medical and industrial purposes is the most important application of research reactors. The neutron radiography system is used for non-destructive testing (NDT) of materials so that it is one of the main applications of nuclear research reactors. One of these research reactors is the 5 MW pool-type light water research reactor of Tehran (TRR). This work aims to investigate on materials and location of the beam tube (BT) of the TRR radiography system to improve the index parameters of BT. Our results showed that a through-type BT with 20 cm thick carbon neutron filter, 1.2 cm and 9.4 cm of the diameter of inlet (D1) and output (D2) BT, respectively gives thermal neutron flux almost 25.7, 5.6 and 1.1 times greater than the former design of the TRR (with D1 = 1.8 cm and D1 = 9.4 cm), previous design of the TRR with D1 = 3 cm and D1 = 9.4 cm, and another design with D1 = 5 cm and D1 = 9.4 cm, respectively. Therefore, the design proposed in this paper could be a better alternative to the current BT of the TRR.

Keywords

References

  1. M. Moguiy, A.H. Fadaei, A.S. Shirani, Recognition of effective parameters and investigating their effects on the beam tube application, Appl. Radiat. Isot. 69 (7) (2011) 975-981. https://doi.org/10.1016/j.apradiso.2011.02.054
  2. Current Status of Neutron Capture Therapy, International Atomic Energy Agency Vienna International Centre, 2001, p. 302. IAEA-TECDOC-1223.
  3. H. Iikura, N. Tsutsui, Y. Saito, T. Nojima, R. Yasuda, T. Sakai, M. Matsubayashi, Investigation of the brightness enhancement using brightness enhancement films on a scintillator, Physics Procedia 43 (2013) 161-168. https://doi.org/10.1016/j.phpro.2013.03.019
  4. H. Li, S. Wang, C. Cao, H. Huo, B. Tang, Neutron imaging development at China academy of engineering physics (CAEP), Physics Procedia 88 (2017) 154-161. https://doi.org/10.1016/j.phpro.2017.06.021
  5. N. Winch, A. Edgar, C. Bartle, Thermal neutron imaging with CsBr storage phosphors, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 763 (2014) 394-398. https://doi.org/10.1016/j.nima.2014.05.128
  6. X. Yan, Y. Yang, Q. Li, X. Yang, J. Lu, S. Meng, Z. Tan, Y. Yang, Q. An, H. Bai, Combined gamma-ray and energy-selective neutron radiography at CSNS, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 955 (2020) 163200. https://doi.org/10.1016/j.nima.2019.163200
  7. A. Tremsin, S. Vogel, M. Mocko, M. Bourke, V. Yuan, R. Nelson, D. Brown, W. Feller, Non-destructive studies of fuel pellets by neutron resonance absorption radiography and thermal neutron radiography, J. Nucl. Mater. 440 (1-3) (2013) 633-646. https://doi.org/10.1016/j.jnucmat.2013.06.007
  8. M. Berli, A. Carminati, T.A. Ghezzehei, D. Or, Evolution of unsaturated hydraulic conductivity of aggregated soils due to compressive forces, Water Resour. Res. 44 (5) (2008).
  9. N. Shokri, P. Lehmann, D. Or, Evaporation from layered porous media, J. Geophys. Res.: Solid Earth 115 (B6) (2010).
  10. P. Zhang, F. Wittmann, T. Zhao, E. Lehmann, L. Tian, P. Vontobel, Observation and quantification of water penetration into strain hardening cement-based composites (SHCC) with multiple cracks by means of neutron radiography, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 620 (2-3) (2010) 414-420. https://doi.org/10.1016/j.nima.2010.04.119
  11. P. Trtik, B. Munch, W.J. Weiss, A. Kaestner, I. Jerjen, L. Josic, E. Lehmann, P. Lura, Release of internal curing water from lightweight aggregates in cement paste investigated by neutron and X-ray tomography, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 651 (1) (2011) 244-249. https://doi.org/10.1016/j.nima.2011.02.012
  12. A. Kaestner, R. Hassanein, P. Vontobel, P. Lehmann, J. Schaap, E. Lehmann, H. Fluhler, Mapping the 3D water dynamics in heterogeneous sands using thermal neutrons, Chem. Eng. J. 130 (2-3) (2007) 79-85. https://doi.org/10.1016/j.cej.2006.06.013
  13. M. Amini, Amir H. Fadaei, M. Gharib, Analyzing the effect of geometric factors on designing neutron radiography system, Appl. Radiat. Isot. 105 (2015) 249-256. https://doi.org/10.1016/j.apradiso.2015.08.030
  14. K.K. Moghadam, F. Ziaie, Modification of the neutron beam spectrum for neutron radiography at Tehran Research Reactor (TRR), Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 377 (1) (1996) 45-47. https://doi.org/10.1016/0168-9002(96)00114-3
  15. M. Keyvani, M. Arkani, A.H. Rokh, Optimization of in-core fuel management strategy of Tehran Research Reactor (TRR) using MCNP-4C, Ann. Nucl. Energy 37 (12) (2010) 1683-1687. https://doi.org/10.1016/j.anucene.2010.07.012
  16. Y. Kasesaz, H. Khalafi, F. Rahmani, Design of an epithermal neutron beam for BNCT in thermal column of Tehran research reactor, Ann. Nucl. Energy 68 (2014) 234-238. https://doi.org/10.1016/j.anucene.2014.01.014
  17. M. Gharib, M. Arkani, A. Hossnirokh, Design and application of MTR fuel assemblies in new proposed inverted mode, Nucl. Eng. Des. 240 (10) (2010) 2981-2987. https://doi.org/10.1016/j.nucengdes.2010.05.044
  18. F.Z. Ronizi, A. Fadaei, S. Setayeshi, A. Shahidi, Investigation of fuel lattice pitch changes influence on reactor performance through evaluate the neutronic parameters, Ann. Nucl. Energy 77 (2015) 343-350. https://doi.org/10.1016/j.anucene.2014.11.024
  19. B. Schillinger, E. Calzada, F. Grunauer, E. Steichele, The design of the neutron radiography and tomography facility at the new research reactor FRM-II at Technical University Munich, Appl. Radiat. Isot. 61 (4) (2004) 653-657. https://doi.org/10.1016/j.apradiso.2004.03.091
  20. F. de Beer, F. Gruenauer, J. Radebe, T. Modise, B. Schillinger, Scientific design of the new neutron radiography facility (SANRAD) at SAFARI-1 for South Africa, Physics Procedia 43 (2013) 34-41. https://doi.org/10.1016/j.phpro.2013.03.004
  21. S. Han, M. Wu, H. Wang, L. Hao, G. Wei, L. He, Y. Wang, Y. Liu, D. Chen, Design of cold neutron imaging facility at China advanced research reactor, Physics Procedia 43 (2013) 73-78. https://doi.org/10.1016/j.phpro.2013.03.009