DOI QR코드

DOI QR Code

탈지 겨자씨 소재 가식성 필름의 물리적 특성 향상을 위한 콜드 플라즈마의 적용

Application of cold plasma treatment as a method to improve the physical properties of defatted mustard meal-based edible films

  • 정하은 (서울여자대학교 자연과학대학 식품공학과) ;
  • 오윤아 (서울여자대학교 자연과학대학 식품공학과) ;
  • 민세철 (서울여자대학교 자연과학대학 식품공학과)
  • Jeong, Ha Eun (Department of Food Science and Technology, Seoul Women's University) ;
  • Oh, Yoon Ah (Department of Food Science and Technology, Seoul Women's University) ;
  • Min, Sea Cheol (Department of Food Science and Technology, Seoul Women's University)
  • 투고 : 2021.08.02
  • 심사 : 2021.08.25
  • 발행 : 2021.10.31

초록

질소, 산소, 헬륨, 아르곤, 그리고 공기 가스로 DMM 필름을 CP 처리했을 때 산소와 공기를 이용한 처리는 필름의 신장률에 변화를 주지 않으면서 인장 강도와 모듈러스를 감소시켰고, 헬륨과 아르곤 가스를 이용한 CP 처리는 인장 강도와 신장률에 변화를 주지 않으면서 모듈러스를 감소시켰기 때문에 산소, 공기, 헬륨, 그리고 아르곤 가스를 이용한 CP 처리를 통해 필름의 인장 특성을 개선시킬 수 있음을 확인할 수 있었다. 사용한 가스와 상관없이 CP 처리는 필름의 색, 수증기 투과도, 그리고 표면 형태에 영향을 주지 않았으나, 헬륨-CP와 아르곤-CP 처리는 필름의 인쇄 적성을 증가시켰다. DMM 필름에 대한 아르곤-CP의 처리 전력 및 처리 시간은 필름의 황색도에는 유의한 영향을 주었으나(p<0.05), 처리 전력과 시간의 변화에 따른 경향은 확인할 수 없었다. 전체적으로 본 연구의 결과는 아르곤-CP 처리가 DMM 필름의 물리적 특성을 향상시키는 기술로 발전할 수 있음을 보여주었고, 이를 통해 DMM 뿐만 아니라 이와 유사한 농산물 가공 부산물을 소재로 제작된 필름의 특성을 개선하는 기술로 CP 처리가 개발될 수 있음을 확인할 수 있었다.

This study investigated the effects of cold plasma (CP) treatment on the properties of biopolymer films prepared with defatted mustard meal (DMM films). CP treatments using N2, O2, He, Ar, and dry air did not affect the tensile properties, water vapor permeability, color, and morphology of DMM films, whereas the treatments using He and Ar improved their printability. The tensile strength (TS) of O2- or air-CP-treated DMM films and the elastic modulus (EM) of O2-, He-, Ar-, or air-CP-treated films were lower than those of the untreated films. An increase in the power of Ar-CP treatment resulted in an increase in EM. The optimum treatment power and time for minimizing yellowness changes by Ar-CP treatment were 420 W and 40 min, respectively. The results demonstrated the potential application of CP treatment to improve the film properties of DMM films and possibly other agricultural by-product-based biopolymer films, making the films more applicable to food packaging.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2019R1F1A1056308; 2019R1A2B5B01069364).

참고문헌

  1. ASTM. Standard test methods for tensile properties of thin plastic sheeting. D822-01. American Society for Testing and Materials, Philadelphia, PA, USA (1997)
  2. Baniya HB, Guragain RP, Baniya B, Subedi DP. Cold atmospheric pressure plasma jet for the improvement of wettability of polypropylene. Int. J. Polym. Sci. 2020: 3860259 (2020)
  3. Baniya HB, Guragain RP, Subedi DP. Cold atmospheric pressure plasma technology for modifying polymers to enhance adhesion: a critical review. Rev. Adhes. Adhes. 9: 269-307 (2021) https://doi.org/10.7569/RAA.2021.097306
  4. Bazaka K, Jacob MV, Crawford RJ, Ivanova EP. Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta. Biomater. 7: 2015-2028 (2011) https://doi.org/10.1016/j.actbio.2010.12.024
  5. Borek V, Morra MJ. Ionic thiocyanate (SCN-) production from 4-hydroxybenzyl glucosinolate contained in Sinapis alba seed meal. J. Agr. Food Chem. 53: 8650-8654 (2005) https://doi.org/10.1021/jf051570r
  6. Bulbul VJ, Bhushette PR, Zambare RS, Deshmukh RR, Annapure US. Effect of cold plasma treatment on Xanthan gum properties. Polym. Test. 79: 106056 (2019) https://doi.org/10.1016/j.polymertesting.2019.106056
  7. Chen YQ, Cheng JH, Sun DW. Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: Mechanisms and application advances. Crit. Rev. Food Sci. 60: 2676-2690 (2020) https://doi.org/10.1080/10408398.2019.1654429
  8. Chae HJ, Han MS, In MJ. Study on utilization of vegetable by-product from food processing by enzyme treatment. Appl. Biol. Chem. 47: 146-148 (2004)
  9. Chung EY, Kim HM, Lee GH, Kwak BK, Jung JS, Kuh HJ, Lee J. Design of deformable chitosan microspheres loaded with super-paramagnetic iron oxide nanoparticles for embolotherapy detectable by magnetic resonance imaging. Carbohyd. Polym. 90: 1725-1731 (2012) https://doi.org/10.1016/j.carbpol.2012.07.058
  10. Darvish F, Sarkari NM, Khani M, Eslami E, Shokri B, Mohseni M, Ebrahimi M, Alizadeh M, Dee CF. Direct plasma treatment approach based on non-thermal gliding arc for surface modification of biaxially-oriented polypropylene with post-exposure hydrophilicity improvement and minus aging effects. Appl. Surf. Sci. 509: 144815 (2020) https://doi.org/10.1016/j.apsusc.2019.144815
  11. Desmet T, Morent R, De Geyter N, Leys C, Schacht E, Dubruel P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules. 10: 2351-2378 (2009) https://doi.org/10.1021/bm900186s
  12. Hendrix KM, Morra MJ, Lee HB, Min SC. Defatted mustard seed meal-based biopolymer film development. Food Hydrocoll. 26: 118-125 (2012) https://doi.org/10.1016/j.foodhyd.2011.04.013
  13. Hertwig C, Meneses N, Mathys A. Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: A review. Trends Food Sci. Tech. 77: 131-142 (2018) https://doi.org/10.1016/j.tifs.2018.05.011
  14. Jana T, Roy BC, Ghosh R, Maiti S. Biodegradable film. IV. Printability study on biodegradable film. J. Appl. Polym. Sci. 79: 1273-1277 (2001) https://doi.org/10.1002/1097-4628(20010214)79:7<1273::AID-APP150>3.0.CO;2-L
  15. Kim JH, Mun C, Ma J, Park SG, Lee S, Kim CS. Simple fabrication of transparent, colorless, and self-disinfecting polyethylene terephthalate film via cold plasma treatment. Nanomaterials 10: 949 (2020) https://doi.org/10.3390/nano10050949
  16. Ma GQ, Liu B, Li C, Huang D, Sheng J. Plasma modification of polypropylene surfaces and its alloying with styrene in situ. Appl. Surf. Sci. 258: 2424-2432 (2012) https://doi.org/10.1016/j.apsusc.2011.10.065
  17. McHugh TH, Avena-Bustillos R, Krochta JM. Hydrophilic edible films: modified procedure for water vapor permeability and explanation of thickness effects. J. Food Sci. 58: 899-903 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb09387.x
  18. Moosavi MH, Khani MR, Shokri B, Hosseini SM, Shojaee-Aliabadi S, Mirmoghtadaie L. Modifications of protein-based films using cold plasma. Int. J. Biol. Macromol. 142: 769-777 (2020) https://doi.org/10.1016/j.ijbiomac.2019.10.017
  19. Morent R, De Geyter N, Desmet T, Dubruel P, Leys C. Plasma surface modification of biodegradable polymers: A review. Plasma Process Polym. 8: 171-190 (2011) https://doi.org/10.1002/ppap.201000153
  20. Oh YA, Roh SH, Min SC. Cold plasma treatments for improvement of the applicability of defatted soybean meal-based edible film in food packaging. Food Hydrocoll. 58: 150-159 (2016) https://doi.org/10.1016/j.foodhyd.2016.02.022
  21. Ozdemir M, Yurteri CU, Sadikoglu H. Physical polymer surface modification methods and applications in food packaging polymers. Crit. Rev. Food Sci. 39: 457-477 (1999) https://doi.org/10.1080/10408699991279240
  22. Pignata C, D'angelo D, Fea E, Gilli G. A review on microbiological decontamination of fresh produce with nonthermal plasma. J. Appl. Microbiol. 122: 1438-1455 (2017) https://doi.org/10.1111/jam.13412
  23. Poncin-Epaillard F, Brosse JC, Falher T. Reactivity of surface groups formed onto a plasma treated poly(propylene) film. Macromol. Chem. Phys. 200: 989-996 (1999) https://doi.org/10.1002/(SICI)1521-3935(19990501)200:5<989::AID-MACP989>3.0.CO;2-M
  24. Sablani SS, Dasse F, Bastarrachea L, Dhawan S, Hendrix KM, Min SC. Apple peel-based edible film development using a high-pressure homogenization. J. Food Sci. 74: E372- E381 (2009) https://doi.org/10.1111/j.1750-3841.2009.01273.x
  25. Surowsky B, Fischer A, Schlueter O, Knorr D. Cold plasma effects on enzyme activity in a model food system. Innov. Food Sci. Emerg. 19: 146-152 (2013) https://doi.org/10.1016/j.ifset.2013.04.002
  26. Song AY, Oh YA, Roh SH, Kim JH, Min, SC. Cold oxygen plasma treatments for the improvement of the physicochemical and biodegradable properties of polylactic acid films for food packaging. J. Food Sci. 81: E86-E96 (2016)
  27. Sowe M, Novak I, Vesel A, Junkar I, Lehocky M, Saha P, Chodak I. Analysis and characterization of printed plasma-treated polyvinyl chloride. Int. J. Polym. Anal. Ch. 14: 641-651 (2009) https://doi.org/10.1080/10236660903225494