DOI QR코드

DOI QR Code

Effect of the Mixture Ratio of Ni-Pt Nanocatalysts on Water Electrolysis Characteristics in AEM System

Ni-Pt 나노 촉매의 혼합비가 음이온 교환막 수전해 특성에 미치는 영향

  • LU, LIXIN (Department of Energy and Electrical Engineering, Woosuk University) ;
  • DAI, GUANXIA (Department of Energy and Electrical Engineering, Woosuk University) ;
  • LEE, JAEYOUNG (Hydrogen Fuel Cell Parts and Applied Technology RIC, Woosuk University) ;
  • LEE, HONGKI (Department of Energy and Electrical Engineering, Woosuk University)
  • 노립신 (우석대학교 에너지전기공학과) ;
  • 대관하 (우석대학교 에너지전기공학과) ;
  • 이재영 (우석대학교 수소연료전지 부품 및 응용기술 지역혁신센터) ;
  • 이홍기 (우석대학교 에너지전기공학과)
  • Received : 2021.09.07
  • Accepted : 2021.10.11
  • Published : 2021.10.30

Abstract

To study the effect of the mixture ratio of Ni-Pt nanocatalysts on water electrolysis characteristics in anion exchange membrane system, Ni-Pt nanocatalysts were loaded on carbon black by using a spontaneous reduction reaction of acetylacetonate compounds. The loading weight of Ni-Pt nanocatalysts on the carbon black was measured by thermogravimetric analyzer and the elemental ratio of Ni and Pt was estimated by energy dispersive x-ray analyzer. It was found that the loading weight of Ni-Pt nanoparticles was 5.36-5.95 wt%, and the loading weight increased with increasing Pt wt%. As the Ni-Pt loading weight increased, the specific surface area decreased, because Ni-Pt nanoparticles block the pores of carbon black. It was confirmed by BET analysis and dynamic vapor sorption analysis. I-V characteristics were estimated.

Keywords

Acknowledgement

본 연구는 2020년도 산업통상자원부의 산업기술혁신사업의 연구비 지원을 받아 수행된 연구입니다(No. 20203030030040).

References

  1. J. M. Han, J. W. Kim, K. K. Bae, C. S. Park, S. U. Jeong, K. J. Jung, K. S. Kang, and S. H. Kim, "Intermittent operation induced deactivation mechanism for HER of Ni-Zn-Fe electrode for alkaline electrolysis", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 1, 2020, pp. 8-22, doi: https://doi.org/10.7316/KHNES.2020.31.1.8.
  2. K. W. Cho, Y. H. Lee, J. H. Han, J. S. Yu, and T. W. Hong, "Composite TiN-Al203 syntheses and hydrogen permeability characteristics evaluation", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 2, 2020, pp. 177-183, doi: https://doi.org/10.7316/KHNES.2020.31.2.177.
  3. S. Seok, D. Y. Lee, and Y. B. Kim, "Hydrogen permeation properties of Ni-based amorphous alloys membrane", Trans. of the Korean Hydrogen and New Energy Society, Vol. 19, No. 1, 2008, pp. 35-40, Retrieved from https://www.koreascience.or.kr/article/JAKO200818259610109.page.
  4. T. N. Veziroglu and S. N. Sahin, "21st Century's energy: hydrogen energy system", Energy Conversion and Management, Vol. 49, No. 7, 2008, pp. 1820-1831, doi: https://doi.org/10.1016/j.enconman.2007.08.015.
  5. T. H. Lee, "Water electrolyzer technical overview and outlook", Journal of the Electric World, Vol. 459, 2015, p. 14, Retrieved from http://www.kea.kr/elec_journal/2015_3/2.pdf.
  6. R. Kannan, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synchronized synthesis of Pd@C-RGO carbocatalyst for improved anode and cathode performance for direct ethylene glycol fuel cell", Chemical Communications, Vol. 50, No. 93, 2014, pp. 14623-14686, doi: https://doi.org/10.1039/C4CC06879C.
  7. R. Kannan, A. R. Kim, and D. J. Yoo, "Enhanced electro-oxidation of methanol, ethylene glycol, glycerol, and xylitol over a polypyrrole/manganese oxyhydroxide/ palladium nanocomposite electrode", Vol. 44, 2014, pp. 893-902, doi: https://doi.org/10.1007/s10800-014-0706-y.
  8. H. Liu and S. Liu, "Life cycle energy consumption and GHG emissions of hydrogen production from underground coal gasification in comparison with surface coal gasification", International Journal of Hydrogen Energy, Vol. 46, No. 14, 2021, pp. 9630-9643, doi: https://doi.org/10.1016/j.ijhydene.2020.12.096.
  9. F. Dawood, M. Anda, and G. M. Shafiullah, "Hydrogen production for energy: an overview", International Journal of Hydrogen Energy, Vol. 45, No. 7, 2020, pp. 3847-3869, https://doi.org/10.1016/j.ijhydene.2019.12.059.
  10. W. I. Park and S. K. Kang, "Analysis of safety by expansion of hydrogen charging station facilities", Journal of the Korean Institute of Gas, Vol. 24, No. 6, 2020, pp. 83-90, doi: https://doi.org/10.7842/kigas.2020.24.6.83.
  11. J. H. Kim, K. H. Kim, and S. Y. Nam, "Research trends of polybenzimidazole-based membranes for hydrogen purification applications", Appl. Chem. Eng., Vol. 31, No. 5, 2020, pp. 453-466, doi: https://doi.org/10.14478/ace.2020.1054.
  12. B. R. Lee, H. J. Lee, J. H. Heo, C. W. Moon, and H. K. Lim, "Stochastic techno-economic analysis of H2 production from power-to- gas using a high-pressure PEM water electrolyzer for a small-scale H2 fueling station", Sustainable Energy & Fuels, Vol. 3, No. 9, 2019, pp. 2521-2529, doi: https://doi.org/10.1039/C9SE00275H.
  13. J. Chi and H. M. Yu, "Water electrolysis based on renewable energy for hydrogen production", Chinese Journal of Catalysis, Vol. 39, No. 3, 2018, pp. 390-394, doi: https://doi.org/10.1016/S1872-2067(17)62949-8.
  14. A. K. Niaz, A. Akhtar, J. Y. Park, and H. T. Lim, "Effects of the operation mode on the degradation behavior of anion exchange membrane water electrolyzers", Journal of Power Sources, Vol. 481, 2021, pp. 229093, doi: https://doi.org/10.1016/j.jpowsour.2020.229093.
  15. S. Trasatti, "Water electrolysis: who first?", J. Electroanal. Chem., Vol. 476, No. 1, 1999, pp. 90-91, Retrieved from http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1371202. https://doi.org/10.1016/S0022-0728(99)00364-2
  16. R. Gazey, S. K. Salman, and D. D. Aklil-D'Halluin, "A field application experience of integrating hydrogen technology with wind power in a remote island location", J. Power Sources, Vol. 157, No. 2, 2006, pp. 841-847, doi: https://doi.org/10.1016/j.jpowsour.2005.11.084.
  17. M. S. Naughton, F. R. Brushett, and P. J. Kenis, "Carbonate resilience of flowing electrolyte-based alkaline fuel cells", J. Power Sources, Vol. 196, No. 4, 2011, pp. 1762-1768, doi: https://doi.org/10.1016/j.jpowsour.2010.09.114.
  18. C. C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi, and M. Comotti, "Highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis", Angew. Chem. Int. Ed., Vol. 53, No. 5, 2014, pp. 1378-1381, doi: https://doi.org/10.1002/anie.201308099.
  19. I. Vincent and D. Bessarabov, "Low cost hydrogen production by anion exchange membrane electrolysis: a review", Renew. Sustain. Energy Rev, Vol. 81, 2018, pp. 1690-1704, doi: https://doi.org/10.1016/j.rser.2017.05.258.
  20. M. J. Jang, M. S. Won, K. H. Lee, and S. M. Choi, "Optimization of operating parameters and components for water electrolysis using anion exchange membrane", J. Korean Inst. Surf. Eng., Vol. 49, No. 2, 2016, pp. 159-165, doi: https://doi.org/10.5695/JKISE.2016.49.2.159.
  21. F. Qin, Y. Ma, L. Miao, Z. Wang, and L. Gan, "Influence of metal-ligand coordination on the elemental growth and alloying composition of Pt-Ni octahedral nanoparticles for oxygen reduction electrocatalysis", ACS Omega, Vol. 4, No. 5, 2019, pp. 8305-8311, doi: https://doi.org/10.1021/acsomega.8b03366.
  22. J. Y. Lee, D. Yin, and S. Horiuchi, "Site and morphology controlled ZnO deposition on Pd catalyst prepared from Pd/PMMA thin film using UV lithography", Chemistry of Materials, Vol. 17, No. 22, 2005, pp. 5498-5503, doi: https://doi.org/10.1021/cm0506555.
  23. J. Y. Lee, Y. Liao, R. Nagahata, and S. Horiuchi, "Effect of metal nanoparticles on thermal stabilization of polymer/metal nanocomposites prepared by a one-step dry process", Polymer, Vol. 47, No. 23, 2006, pp. 7970-7979, doi: https://doi.org/10.1016/j.polymer.2006.09.034.
  24. T. O. Kang, K. I. Lee, and J. K. Yoon, "The reduction mechanism of nickel oxide with graphite", Korean Journal of Metals and Materials, Vol. 15, No. 2, 1977, pp. 147, Retrieved from http://www.kjmm.or.kr/past/view_kiss.asp?a_key=133876#.