DOI QR코드

DOI QR Code

Preparation and Characterization of Fe/Ni Nanocatalyst in a Nucleophilic Solvent for Anion Exchange Membrane in Alkaline Electrolysis

친핵성 용매 중에서 자발적 환원반응에 의한 음이온 교환막 수전해용 Fe/Ni 나노 촉매의 제조 및 특성

  • DAI, GUANXIA (Department of Electricity and Electrical Engineering, Woosuk University) ;
  • LU, LIXIN (Department of Electricity and Electrical Engineering, Woosuk University) ;
  • LEE, JAEYOUNG (Hydrogen Fuel Cell Parts and Applied Technology RIC, Woosuk University) ;
  • LEE, HONGKI (Department of Electricity and Electrical Engineering, Woosuk University)
  • 대관하 (우석대학교 에너지전기공학과) ;
  • 노립신 (우석대학교 에너지전기공학과) ;
  • 이재영 (우석대학교 수소연료전지 부품 및 응용기술 지역혁신센터) ;
  • 이홍기 (우석대학교 에너지전기공학과)
  • Received : 2021.09.07
  • Accepted : 2021.10.11
  • Published : 2021.10.30

Abstract

To synthesize Fe/Ni nanocatalysts loaded on carbon black, Iron(II) acetylacetonate and nickel (II) acetylacetonate and were reduced to Fe and Ni metallic nanoparticles by a spontaneous reduction reaction. The distribution of the Fe and Ni nanoparticles was observed by transmission electron microscopy, and the loading weight of Fe/Ni nanocatalysts on the carbon black was measured by thermogravimetric analyzer. The elemental ratio of Fe and Ni was estimated by energy dispersive x-ray analyzer. It was found that the loading weight of Fe/Ni nanoparticles was 6.23 wt%, and the elemental ratio of Fe and Ni was 0.53:0.40. Specific surface area was measured by BET analysis instrument and I-V characteristics were estimated.

Keywords

Acknowledgement

본 연구는 2020년도 산업통상자원부의 산업기술혁신사업의 연구비 지원을 받아 수행된 연구입니다(No. 20203030030040).

References

  1. J. M. Han, J. W. Kim, K. K. Bae, C. S. Park, S. U. Jeong, K. J. Jung, K. S. Kang, and S. H. Kim, "Intermittent operation induced deactivation mechanism for HER of Ni-Zn-Fe electrode for alkaline electrolysis", Trans. of the Korean Hydrogen and New Energy Society, Vol. 31, No. 1, 2020, pp. 8-22, doi: https://doi.org/10.7316/KHNES.2020.31.1.8.
  2. K. W. Cho, Y. H. Lee, J. H. Han, J. S. Yu, and T. W. Hong, "Composite TiN-Al203 syntheses and hydrogen permeability characteristics evaluation", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 2, 2020, pp. 177-183, doi: https://doi.org/10.7316/KHNES.2020.31.2.177.
  3. R. Kannan, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synchronized synthesis of Pd@C-RGO carbocatalyst for improved anode and cathode performance for direct ethylene glycol fuel cell", Chemical Communications, Vol. 50, No. 93, 2014, pp. 14623-14686, doi: https://doi.org/10.1039/C4CC06879C.
  4. R. Kannan, A. R. Kim, and D. J. Yoo, "Enhanced electro-oxidation of methanol, ethylene glycol, glycerol, and xylitol over a polypyrrole/manganese oxyhydroxide/palladium nanocomposite electrode", Vol. 44, 2014, pp. 893-902, doi: https://doi.org/10.1007/s10800-014-0706-y.
  5. B. R. Lee, H. J. Lee, J. H. Heo, C. W. Moon, and H. K. Lim, "Stochastic techno-economic analysis of H2 production from power-to- gas using a high-pressure PEM water electrolyzer for a small-scale H2 fueling station", Sustainable Energy & Fuels, Vol. 3, No. 9, 2019, pp. 2521-2529, doi: https://doi.org/10.1039/C9SE00275H.
  6. JJ. Chi and H. M. Yu, "Water electrolysis based on renewable energy for hydrogen production", Chinese Journal of Catalysis, Vol. 39, No. 3, 2018, pp. 390-394, doi: https://doi.org/10.1016/S1872-2067(17)62949-8.
  7. S. Trasatti, "Water electrolysis: who first?", J. Electroanal. Chem., Vol. 476, No. 1, 1999, pp. 90-91, Retrieved from http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1371202. https://doi.org/10.1016/S0022-0728(99)00364-2
  8. R. Gazey, S. K. Salman, and D. D. Aklil-D'Halluin, "A field application experience of integrating hydrogen technology with wind power in a remote island location", J. Power Sources, Vol. 157, No. 2, 2006, pp. 841-847, doi: https://doi.org/10.1016/j.jpowsour.2005.11.084.
  9. M. S. Naughton, F. R. Brushett, and P. J. Kenis, "Carbonate resilience of flowing electrolyte-based alkaline fuel cells", J. Power Sources, Vol. 196, No. 4, 2011, pp. 1762-1768, doi: https://doi.org/10.1016/j.jpowsour.2010.09.114.
  10. M. J. Jang, M. S. Won, K. H. Lee, and S. M. Choi, "Optimization of operating parameters and components for water electrolysis using anion exchange membrane", J. Korean Inst. Surf. Eng., Vol. 49, No. 2, 2016, pp. 159-165, doi: https://doi.org/10.5695/JKISE.2016.49.2.159.
  11. H. S. Cho, W. C. Cho, and C. H. Kim, "Low-temperature alkaline water electrolysis", KIC News, Vol. 21, No. 8, 2018, pp. 23, Retrieved from https://www.cheric.org/PDF/PIC/PC21/PC21-5-0023.pdf.
  12. A. Kiani and S. Hatami, "Fabrication of platinum coated nanoporous gold film electrode: a nanostructured ultra low-platinum loading electrocatalyst for hydrogen evolution reaction", International Journal of Hydrogen Energy, Vol. 35, No. 11, 2010, pp. 5202-5209, doi: https://doi.org/10.1016/j.ijhydene.2010.03.014.
  13. V. Vij, S. Sultan, A. Harzandi, A. Meena, J. Tiwari, W. Lee, T. Yoon and K. Kim, "Nickel-based electrocatalysts for energy-related applications; oxygen reduction, oxygen evolution, and hydrogen evolution reactions", ACS Catalysis, Vol. 7, No. 10, 2017, pp. 7196-7225, doi: https://doi.org/10.1021/acscatal.7b01800.
  14. J. Y. Lee, D. Yin, and S. Horiuchi, "Site and morphology controlled ZnO deposition on Pd catalyst prepared from Pd/PMMA thin film using UV lithography", Chemistry of Materials, Vol. 17, No. 22, 2005, p. 5498-5503, doi: https://doi.org/10.1021/cm0506555.
  15. J. Y. Lee, Y. Liao, R. Nagahata, and S. Horiuchi, "Effect of metal nanoparticles on thermal stabilization of polymer/metal nanocomposites prepared by a one-step dry process", Polymer, Vol. 47, No. 23, 2006, pp. 7970-7979, doi: https://doi.org/10.1016/j.polymer.2006.09.034.
  16. T. O. Kang, K. I. Lee, and J. K. Yoon, "The reduction mechanism of Nickel Oxide with Graphite", Korean Journal of Metals and Materials, Vol. 15, No. 2, 1977, pp. 147, Retrieved from http://www.kjmm.or.kr/past/view_kiss.asp?a_key=133876#.