DOI QR코드

DOI QR Code

A Study on Thermal Design of Printed Circuit Heat Exchanger for Supply of Cryogenic High Pressure Liquid Hydrogen

극저온 고압액체수소 공급용 인쇄기판 열교환기의 열설계에 관한 연구

  • SOHN, SANGHO (Department of Thermal System, Energy Systems Research Division, Korea Institute of Machinery and Materials) ;
  • CHOI, BYUNG-IL (Department of Plant Technology, Energy Systems Research Division, Korea Institute of Machinery and Materials)
  • 손상호 (한국기계연구원 에너지기계연구본부 열시스템연구실) ;
  • 최병일 (한국기계연구원 에너지기계연구본부 플랜트융합연구실)
  • Received : 2021.09.15
  • Accepted : 2021.10.11
  • Published : 2021.10.30

Abstract

This paper is a study on the thermal design of printed circuit heat exchanger (PCHE) to supply cryogenic high pressure liquid hydrogen stored from hydrogen liquefaction process by using computational fluid dynamics (CFD). This PCHE should be thermally designed to raise the temperature of cryogenic liquid hydrogen to a desired temperature and also to be anti-icing to avoid any local freezing in hot channel. This research presents the effect of inlet velocity and inlet temperature of hydrogen, and the effect of flow configurations of co/counter-flow on thermal design of PCHE heat exchanger based on various CFD simulation analysis.

Keywords

Acknowledgement

본 연구는 2021년 한국기계연구원 기본사업인 '액체수소 공급시스템 핵심 기자재 개발(NK231B)'의 지원으로 연구한 결과물입니다.

References

  1. Q. Wilhelmsen, D. Berstad, A. Aasen, and P. Neksa, "Reducing the exergy destruction in the cryogenic heat exchangers of hydro liquefaction processes", Int. J. hydrogen energy, Vol. 43, No. 10, 2018, pp.5033-5047, doi: https://doi.org/10.1016/j.ijhydene.2018.01.094.
  2. T. Kim, B. I. Choi, Y. S. Han, and K. H Do, "Thermodynamic analysis of a hydrogen liquefaction process for a hydrogen liquefaction pulot platn with a small capacity", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 1, 2020, pp. 41-48, doi: https://doi.org/10.7316/KHNES.2020.31.1.41.
  3. J. W. Leachman, R. T. Jacobsen, S. G. Penoncello, and E.W. Lemmon, "Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen", J. Phys. Chem. Ref. Data, Vol. 38, No. 721, 2009, doi: https://doi.org/10.1063/1.3160306.
  4. P. J. Donaubauer, U. Cardella, L. Decker, and H. Klein, "Kinetics and heat exchanger design for catalytic ortho-para hydrogen conversion durting liquefaction", Chem. Eng. Technol, Vol. 42, No. 3 2019, pp. 669-679, doi: https://doi.org/10.1002/ceat.201800345.
  5. B. Sun, D. Wadnerkar, R. P. Utikar, M. Tade, N. Kavanagh, S. Faka, G. M. Evans, and V. K. Pareek, "Modeling of cryogenic liquefied natural gas ambient air vaporizers", Ind. Eng. Chem. Res, Vol. 57, No. 28, 2018, pp. 9281-9291, doi: https://doi.org/10.1021/acs.iecr.8b01226.
  6. M. Ichard, Q. R. Hansen, P. Middha, and D. Willoughby, "CFD computations of liquid hydrogen releases", Int. J. hyrogen energy, Vol 37, No. 22, 2012, pp. 17380-17389, doi: https://doi.org/10.1016/j.ijhydene.2012.05.145.
  7. D. C. Lee, H. Afrianto, H. S. Chung, and H. M. Jeong, "Numerical analysis of LNG vaporizer heat transfer characteristic in LNG fuel ship", The Korean Society of Marine Eng, Vol. 37, No. 1, 2013, pp. 22-28, doi: https://doi.org/10.5916/jkosme.2013.37.1.22.
  8. F. Huerta and V. Vesovic, "CFD modelling of the isobaric evaporation of cryogenic liquids in storage tanks", Int. J. heat and mass transfer, Vol. 176, 2021, pp. 121419, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121419.
  9. S. Beak, J. H. Kim, S. Jeong, and J. Jung, "Development of highly effective cryogenic printed circuit heat exchanger (PCHE) with low axial conduction", Cryogenics, Vol. 52, No. 7-9, 2012, pp. 366-374, doi: https://doi.org/10.1016/j.cryogenics.2012.03.001.
  10. D. Popov, K. Fikiin, B. Stankov, G. Alvarez, M. Y. Idrissi, A. Damas, J. Evans, and T. Brown, "Cryogenic heat exchangers for process cooling and renewable energy storage: a review", App. Thermal Eng, Vol. 153, 2019, pp. 275-290, doi: https://doi.org/10.1016/j.applthermaleng.2019.02.106.
  11. "Standard test method for freezing point of aqueous engine coolants", ASTM D1177-17, 2017, Retrieved from https://www.astm.org/Standards/D1177.htm.
  12. "ANSYS fluent theory guide", ANSYS, 2013.
  13. "Fuelingprotocols for light duty gaseous hydrogen surface vehicles J2601_202005", SAE MOBILUS, 2020, Retrieved from https://www.sae.org/standards/content/j2601_202005/.