DOI QR코드

DOI QR Code

Finite Element Analysis of Silo Type Underground Opening for LILW Disposal Facility

사일로 구조형식 중저준위 방폐물 처분동굴의 유한요소 해석

  • Received : 2021.08.18
  • Accepted : 2021.08.30
  • Published : 2021.10.31

Abstract

Finite element analysis of the silo type underground opening for low- and intermediate-level radioactive waste (LILW) disposal facilities in Korea is presented in this study. The silo wall is circular and the roof is made up of domes. The silo wall is 25 meters in diameter, 35 meters in height, and the dome is 30 meters in diameter and 17.4 meters in height, and it is located at -80 meters to -130 meters at sea level. Although six silos have been constructed in the first stage and are in operation, only one silo was considered in this study. The two-dimensional axial symmetric finite element model, as well as the three-dimensional finite element model were made using the computer program SMAP-3D. Generalized Hoek and Brown Model was used for the numerical analyses. The finite element analysis of the silo type underground opening was carried out under various lateral pressure coefficients (defined as ratio of average horizontal to vertical in-situ stress), and the numerical results of these analyses were examined.

본 논문에서는 우리나라의 중저준위 방폐물 처분을 위한 사일로 형식 지하동굴의 유한요소해석을 수행하였다. 사일로의 벽체부분은 지름 25m의 원형구조이고, 높이는 35m이다. 사일로의 천장부분은 지름 30m의 돔 형식이고, 높이 17.4m의 규모이다. 사일로는 해수면으로부터 -80m에서 -130m에 위치하고 있다. 중저준위 방폐물 처분 1단계 시설로 6개의 사일로가 건설되어 운영되고 있으나, 본 연구에서는 1개의 사일로에 대해서 고려하였다. SMAP-3D 프로그램을 사용하여 2차원 축대칭 유한요소모델과 3차원 유한요소모델을 생성하였다. Generalized Hoek and Brown Model이 수치해석에 적용되었다. 다양한 측압계수(수평방향 현장응력과 수직방향 현장응력의 비)의 변화에 따른 사일로 형식 지하동굴의 유한요소해석을 수행하였으며, 수치해석결과 및 분석결과가 제시되었다.

Keywords

Acknowledgement

본 연구는 2019 에너지기술개발사업의 지원으로 수행되고 있는 과제(과제번호: 20193210100040) 내용의 일부를 요약 정리한 것입니다. 산업통상자원부와 한국에너지기술평가원의 연구비 지원에 깊은 감사를 드립니다.

References

  1. Comtec Research (2019) SMAP-3D Version 7 Manual.
  2. Hoek, E., Brown, E.T. (1984) Underground Excavations in Rock, The Institution of Mining and Metallurgy: London.
  3. Kim, K.J., Piepenburg, D.D., Merkle, D.H. (1987) Influence of the Intermediate Principal Stress on Rock Tunnel Behavior, Proc. of 2nd Int. Conf. on Constitutive Laws in Engineering Materials, Tucson, AZ.
  4. Kim, M.K., Choi, I.K., Jeong, J. (2011) Development of a Seismic Risk Assessment System for Low and Intermediate Level Radioactive Waste Repository - Current Status of Year 1 Research, WM2011 Conference, Phoenix, AZ.
  5. Kim, S.H. (2013) Finite Element Analysis of Underground Electrical Power Cable Structures Considering the Effects of Construction Sequence, J. Comput. Struct. Eng. Inst. Korea, 26(2), pp.147~155. https://doi.org/10.7734/COSEIK.2013.26.2.147
  6. Kim, S.H., Kim, K.J. (2000) Two-phase Finite Element Procedures for Dynamic Analysis of Saturated Porous Media, Eng. Comput., 17(7), pp.758~774. https://doi.org/10.1108/02644400010352234
  7. KINS (2011) The Investigation and Analysis for Stability Evaluation and a Verification Process Establishment of a Gyeongju Radioactive Waste Disposal Facility Silo Structure, pp.1~28.
  8. KORAD (2018) Earth & Us, Korea Radioactive Waste Agency.
  9. Park, J.B., et al. (2009) Wolsong Low- and Intermediate-Level Radioactive Easte Disposal Center: Progress and Challenges, Nucl. Eng. & Technol., 41(4), pp.1~16. https://doi.org/10.5516/NET.2009.41.1.001
  10. Park, J.H., Kim, M.K., Choi, I.K. (2012) Seismic Fragility Evaluation of Surface Facilities Structures in Intermediate Low-Level Radioactive Waste Repository, J. Comput. Struct. Eng. Inst. Korea, 25(1), pp.57~64. https://doi.org/10.7734/COSEIK.2012.25.1.057
  11. Shin, Y.L., Lee, J.W. (2017) The Status and Experiences of LILW Disposal Facility Construction, J. Korean Soc. Miner. Energy Resour. Eng., 54(4), pp.389~396. https://doi.org/10.12972/ksmer.2017.54.4.389