DOI QR코드

DOI QR Code

Reactive oxygen species-mediated cytotoxicity of indirect restorative cement on periodontal stem cells

간접수용복 시멘트 처리로 유발된 활성산소종에 의한 치주줄기세포 독성

  • 박소영 (동서대학교 치위생학과)
  • Received : 2021.08.17
  • Accepted : 2021.09.20
  • Published : 2021.10.30

Abstract

Objectives: This study aimed to investigate the cytotoxicity of Nexus RMGIC, an indirect restorative cement, on cell survival rate and reactive oxygen species (ROS) production in periodontal stem cells (PDSCs). Methods: PDSCs were incubated with serially diluted Nexus RMGIC eluates with and without the addition of N-acetyl-cysteine (NAC). Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The ROS generation was determined by measuring the fluorescence intensity for 2',7'-dichlorofluorescin diacetate. Results: Nexus RMGIC exposure decreased cell proliferation and cell survival rate in a dose-dependent manner (1:8, 1:4, 1:2, 1:1) in PDSCs. The cytotoxicity of Nexus RMGIC was inhibited by treatment with 10-mM NAC. In addition, the production of ROS was detected by immunofluorescence after PDSCs were exposed to Nexus RMGIC. However, ROS generation was significantly suppressed in the NAC pretreatment compared with the Nexus RMGIC group. Conclusions: Nexus RMGIC increased the cytotoxicity and ROS generation. ROS was involved in Nexus RMGIC-induced cell toxicity.

Keywords

References

  1. Kent BE, Lewis BG, Wilson AD. The properties of a glass ionomer cement. Br Dent J 1973;2;135(7):322-6. https://doi.org/10.1038/sj.bdj.4803083
  2. Wilson AD. Resin-modified glass-ionomer cements. Int J Prosthodont 1990;3(5):425-9.
  3. Hill EE, Lott J. A clinically focused discussion of luting materials. Aust Dent J 2011;56 Suppl 1:67-76. https://doi.org/10.1111/j.1834-7819.2010.01297.x
  4. Van Landuyt KL, Snauwaert J, De Munck J, Peumans M, Yoshida Y, Poitevin A, et al. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 2007;28(26):3757-85. https://doi.org/10.1016/j.biomaterials.2007.04.044
  5. Schweikl H, Hartmann A, Hiller KA, Spagnuolo G, Bolay C, Brockhoff G, et al. Inhibition of TEGDMA and HEMA-induced genotoxicity and cell cycle arrest by N-acetylcysteine. Dent Mater 2007;23(6):688-95. https://doi.org/10.1016/j.dental.2006.06.021
  6. Gallorini M, Cataldi A, di Giacomo V. HEMA-induced cytotoxicity: oxidative stress, genotoxicity and apoptosis. Int Endod J 2014;47(9):813-8. https://doi.org/10.1111/iej.12232
  7. Mazzaoui SA, Burrow MF, Tyas MJ, Rooney FR, Capon RJ. Long-term quantification of the release of monomers from dental resin composites and a resin-modified glass ionomer cement. J Biomed Mater Res 2002;63(3):299-305. https://doi.org/10.1002/jbm.10184
  8. Durner J, Kreppel H, Zaspel J, Schweikl H, Hickel R, Reichl FX. The toxicokinetics and distribution of 2-hydroxyethyl methacrylate in mice. Biomaterials 2009;30(11):2066-71. https://doi.org/10.1016/j.biomaterials.2008.12.061
  9. Van Landuyt KL, Nawrot T, Geebelen B, De Munck J, Snauwaert J, Yoshihara K, et al. How much do resin-based dental materials release? a meta-analytical approach. Dent Mater 2011;27(8):723-47. https://doi.org/10.1016/j.dental.2011.05.001
  10. Geurtsen W, Spahl W, Leyhausen G. Residual monomer/additive release and variability in cytotoxicity of light-curing glass-ionomer cements and compomers. J Dent Res 1998;77(12):2012-9. https://doi.org/10.1177/00220345980770121001
  11. Kwon JH, Park HC, Zhu T, Yang HC. Inhibition of odontogenic differentiation of human dental pulp cells by dental resin monomers. Biomater Res 2015;10;19:8,015-0030-6. eCollection 2015. https://doi.org/10.1186/s40824-015-0030-6
  12. Samuelsen JT, Dahl JE, Karlsson S, Morisbak E, Becher R. Apoptosis induced by the monomers HEMA and TEGDMA involves formation of ROS and differential activation of the MAP-kinases p38, JNK and ERK. Dent Mater 2007;23(1):34-9. https://doi.org/10.1016/j.dental.2005.11.037
  13. Baldion PA, Velandia-Romero ML, Castellanos JE. Dental resin monomers induce early and potent oxidative damage on human odontoblastlike cells. Chem Biol Interact 2021;5;333:109336. https://doi.org/10.1016/j.cbi.2020.109336
  14. Bandarra S, Neves J, Paraiso A, Mascarenhas P, Ribeiro AC, Barahona I. Biocompatibility of self-adhesive resin cement with fibroblast cells. J Prosthet Dent 2021;125(4):705.e1,705.e7. https://doi.org/10.1016/j.prosdent.2021.01.002
  15. Goon AT, Isaksson M, Zimerson E, Goh CL, Bruze M. Contact allergy to (meth)acrylates in the dental series in southern Sweden: simultaneous positive patch test reaction patterns and possible screening allergens. Contact Dermatitis 2006;55(4):219-26. https://doi.org/10.1111/j.1600-0536.2006.00922.x
  16. Havmose M, Thyssen JP, Zachariae C, Johansen JD. Contact allergy to 2-hydroxyethyl methacrylate in Denmark. Contact Dermatitis 2020;82(4):229-31. https://doi.org/10.1111/cod.13439
  17. Stanislawski L, Lefeuvre M, Bourd K, Soheili-Majd E, Goldberg M, Perianin A. TEGDMA-induced toxicity in human fibroblasts is associated with early and drastic glutathione depletion with subsequent production of oxygen reactive species. J Biomed Mater Res A 2003;66(3):476-82. https://doi.org/10.1002/jbm.a.10600
  18. Lee DH, Lim BS, Lee YK, Ahn SJ, Yang HC. Involvement of oxidative stress in mutagenicity and apoptosis caused by dental resin monomers in cell cultures. Dent Mater 2006;22(12):1086-92. https://doi.org/10.1016/j.dental.2005.09.002
  19. Morisbak E, Ansteinsson V, Samuelsen JT. Cell toxicity of 2-hydroxyethyl methacrylate (HEMA): the role of oxidative stress. Eur J Oral Sci 2015;123(4):282-7. https://doi.org/10.1111/eos.12189
  20. Jiao Y, Ma S, Wang Y, Li J, Shan L, Liu Q, et al. N-Acetyl Cysteine depletes reactive oxygen species and prevents dental monomer-induced intrinsic mitochondrial apoptosis in vitro in human dental pulp cells. PLoS One 2016;25;11(1):e0147858. https://doi.org/10.1371/journal.pone.0147858
  21. ISO 7405. Dentistry - Evaluation of biocompatibility of medical devices used in dentistry.; 2018. [cited 2021 Sept 19]. Available from: http://www.iso.org/obp/ui/#iso:std:iso:7405:ed-3:v2:en.
  22. ISO 10993-5. Biological evaluation of medical devices - part 5: Tests for in vitro cytotoxicity; 2009. [cited 2021 Sept 19]. Available from: http://www.iso.org/obp/ui#iso:std:iso:10993:-5:ed-3:v1:en.
  23. Korea Centers for Disease Control and Prevention. The prevalence of periodontal disease. Korea National Health and Nutrition Examination Survey. [cited 2021 Sept 19]. Available from: http://health.kdca.go.kr/healthinfo/biz/pblcVis/details.do?ctgrSn=59.
  24. Bhattarai G, Poudel SB, Kook SH, Lee JC. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis. Acta Biomater 2016;29:398-408. https://doi.org/10.1016/j.actbio.2015.10.031
  25. Kim TI, Han JE, Jung HM, Oh JH, Woo KM. Analysis of histone deacetylase inhibitor-induced responses in human periodontal ligament fibroblasts. Biotechnol Lett 2013;35(1):129-33. https://doi.org/10.1007/s10529-012-0992-6
  26. Sczepanik FSC, Grossi ML, Casati M, Goldberg M, Glogauer M, Fine N, et al. Periodontitis is an inflammatory disease of oxidative stress: we should treat it that way. Periodontol 2000 2020;84(1):45-68. https://doi.org/10.1111/prd.12342
  27. Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, Zhou T, et al. Role of ROS and nutritional antioxidants in human diseases. Front Physiol 2018;17(9):477. https://doi.org/10.3389/fphys.2018.00477
  28. Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 2016;1863(12):2977-92. https://doi.org/10.1016/j.bbamcr.2016.09.012
  29. Tsubata T. Involvement of Reactive Oxygen Species (ROS) in BCR signaling as a second messenger. Adv Exp Med Biol 2020;1254:37-46. https://doi.org/10.1007/978-981-15-3532-1_3
  30. Ambati M, Rani KR, Reddy PV, Suryaprasanna J, Dasari R, Gireddy H. Evaluation of oxidative stress in chronic periodontitis patients following systemic antioxidant supplementation: a clinical and biochemical study. J Nat Sci Biol Med 2017;8(1):99-103. https://doi.org/10.4103/0976-9668.198366
  31. Chen RS, Lee MS, Hu YJ, Hu CY, Tseng WY. The effects of low-dose 2-hydroxyethyl methacrylate on apoptosis and survival in human dental pulp cells. J Formos Med Assoc 2021;120(6):1332-9. https://doi.org/10.1016/j.jfma.2020.11.022
  32. Schweikl H, Godula M, Petzel C, Bolay C, Hiller KA, Buchalla W. Critical role of superoxide anions and hydroxyl radicals in HEMA-induced apoptosis. Dent Mater 2017;33(1):110-8. https://doi.org/10.1016/j.dental.2016.11.003