DOI QR코드

DOI QR Code

SOME REMARKS FOR λ-SPIRALLIKE FUNCTION OF COMPLEX ORDER AT THE BOUNDARY OF THE UNIT DISC

  • Akyel, Tugba (The Faculty of Engineering and Natural Sciences Maltepe University)
  • Received : 2020.09.08
  • Accepted : 2021.01.20
  • Published : 2021.10.31

Abstract

We consider a different version of Schwarz Lemma for λ-spirallike function of complex order at the boundary of the unit disc D. We estimate the modulus of the angular derivative of the function $\frac{zf^{\prime}(z)}{f(z)}$ from below for λ-spirallike function f(z) of complex order at the boundary of the unit disc D by taking into account the zeros of the function f(z)-z which are different from zero. We also estimate the same function with the second derivatives of the function f at the points z = 0 and z = z0 ≠ 0. We show the sharpness of these estimates and present examples.

Keywords

References

  1. T. Akyel and B. Ornek, Sharpened forms for λ-spirallike function of complex order on the boundary, AIP Conference Proceedings of the Fourth International Conference of Mathematical Sciences (ICMS 2020), In press.
  2. F. M. Al-Oboudi and M. M. Haidan, Spirallike functions of complex order, J. Nat. Geom. 19 (2001), no. 1-2, 53-72.
  3. T. Aliyev Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Var. Elliptic Equ. 58 (2013), no. 4, 571-577. https://doi.org/10.1080/17476933.2012.718338
  4. H. P. Boas, Julius and Julia: mastering the art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), no. 9, 770-785. https://doi.org/10.4169/000298910X521643
  5. V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. (N.Y.) 122 (2004), no. 6, 3623-3629; translated from Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 286 (2002), Anal. Teor. Chisel i Teor. Funkts. 18, 74-84, 228-229. https://doi.org/10.1023/B:JOTH.0000035237.43977.39
  6. G. M. Goluzin, Geometrical theory of functions of a complex variable, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1952.
  7. M. Jeong, The Schwarz lemma and boundary fixed points, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 18 (2011), no. 3, 275-284. https://doi.org/10.7468/jksmeb.2011.18.3.275
  8. M. Mateljevic, The lower bound for the modulus of the derivatives and Jacobian of harmonic injective mappings, Filomat 29 (2015), no. 2, 221-244. https://doi.org/10.2298/FIL1502221M
  9. M. Mateljevic, N. Mutavdzc, and B. N. Ornetk, Note on some classes of holomorphic functions related to Jack's and Schwarz's lemma, https://doi.org/10.13140/RG.2.2.25744.15369
  10. P. R. Mercer, Sharpened versions of the Schwarz lemma, J. Math. Anal. Appl. 205 (1997), no. 2, 508-511. https://doi.org/10.1006/jmaa.1997.5217
  11. P. R. Mercer, Boundary Schwarz inequalities arising from Rogosinski's lemma, J. Class. Anal. 12 (2018), no. 2, 93-97. https://doi.org/10.7153/jca-2018-12-08
  12. B. N. Ornek, Inequalities for the non-tangential derivative at the boundary for holomorphic function, Commun. Korean Math. Soc. 29 (2014), no. 3, 439-449. https://doi.org/10.4134/CKMS.2014.29.3.439
  13. B. N. Ornek, A sharp Caratheodory's inequality on the boundary, Commun. Korean Math. Soc. 31 (2016), no. 3, 533-547. https://doi.org/10.4134/CKMS.c150194
  14. B. N. Ornek and T. Duzenli, Bound estimates for the derivative of driving point impedance functions, Filomat 32 (2018), no. 18, 6211-6218. https://doi.org/10.2298/fil1818211o
  15. B. N. Ornek and T. Duzenli, Boundary analysis for the derivative of driving point impedance functions, IEEE Transactions on Circuits and Systems II: Express Briefs. 65 (2018), 1149-1153. https://doi.org/10.1109/tcsii.2018.2809539
  16. B. N. Ornek and T. Duzenli, On boundary analysis for derivative of driving point impedance functions and its circuit applications, IET Circuits, Systems and Devices 13 (2019), 145-152. https://doi.org/10.1049/iet-cds.2018.5123
  17. R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3513-3517. https://doi.org/10.1090/S0002-9939-00-05463-0
  18. Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften, 299, Springer-Verlag, Berlin, 1992. https://doi.org/10.1007/978-3-662-02770-7
  19. D. Shoikhet, M. Elin, F. Jacobzon, and M. Levenshtein, The Schwarz Lemma: Rigidity and Dynamics, Harmonic and Complex Analysis and its Applications, Springer International Publishing, 2014.