A NOTE ON GCR-LIGHTLIKE WARPED PRODUCT SUBMANIFOLDS IN INDEFINITE KAehler MANIFOLDS

SANGEET KUMAR AND MEGHA PRUTHI

Abstract. We prove the non-existence of warped product GCR-lightlike submanifolds of the type $K_\perp \times_\lambda K_T$ such that K_T is a holomorphic submanifold and K_\perp is a totally real submanifold in an indefinite Kaehler manifold \tilde{K}. Further, the existence of GCR-lightlike warped product submanifolds of the type $K_T \times_\lambda K_\perp$ is obtained by establishing a characterization theorem in terms of the shape operator and the warping function in an indefinite Kaehler manifold. Consequently, we find some necessary and sufficient conditions for an isometrically immersed GCR-lightlike warped product submanifold in an indefinite Kaehler manifold to be a GCR-lightlike warped product, in terms of the canonical structures f and ω. Moreover, we also derive a geometric estimate for the second fundamental form of GCR-lightlike warped product submanifolds, in terms of the Hessian of the warping function λ.

1. Introduction

Warped product manifolds were firstly introduced in 1969 by Bishop and O’Neill [3], to construct examples of negatively curved manifolds. But, the study of warped products became more popular among researchers, when CR-warped product submanifolds were presented by Chen [4], in Kaehler manifolds and he derived that warped product CR submanifolds of the type $K_\perp \times_\lambda K_T$ do not exist in Kaehler manifolds such that K_T and K_\perp, respectively, represent holomorphic submanifolds and totally real submanifolds. A detailed study on warped products focusing on manifolds with positive definite metric can be found in [5]. One may note that the concept of warped products has been successfully employed in the study of cosmological models, black holes and Einstein’s field equations (c.f., [2,10,16]). However, far less common are the studies where warped products are considered on manifolds with indefinite metrics. To this end, the semi-Riemannian manifolds provide a more broad framework for investigation of warped products and may result in striking applications. In
this context, two classes of warped product lightlike manifolds were defined by Duggal [6]. Subsequently, Sahin [17] proposed the concept of warped product lightlike submanifolds of semi-Riemannian manifolds and obtained some basic results on this class of lightlike submanifolds. Very recently, Kumar [12–14] investigated warped product lightlike submanifolds in indefinite nearly Kaehler manifolds. Thus, the significant applications of warped product lightlike submanifolds and important geometric properties of indefinite Kaehler manifolds motivated us to analyze warped product lightlike submanifolds in indefinite Kaehler manifolds.

To this end, in the present paper, we derive the non-existence of warped product GCR-lightlike submanifolds of the type $K \times_{\lambda} K_T$ provided K_T is a holomorphic submanifold and K_\perp is a totally real submanifold in an indefinite Kaehler manifold \tilde{K}. Then, the existence of GCR-lightlike warped product submanifolds of the type $K_T \times_{\lambda} K_\perp$ is obtained by establishing a characterization theorem in terms of the shape operator and the warping function in an indefinite Kaehler manifold. Consequently, we find some necessary and sufficient conditions for an isometrically immersed GCR-lightlike submanifold in an indefinite Kaehler manifold to be a GCR-lightlike warped product, in terms of the canonical structures f and ω. Moreover, we also derive a geometric estimate for the second fundamental form of GCR-lightlike warped product submanifolds, in terms of the Hessian of the warping function λ.

2. Preliminaries

2.1. Lightlike submanifolds

Assume (K_m, g) is an immersed submanifold in a semi-Riemannian manifold $(\tilde{K}_{m+n}, \tilde{g})$ with constant index q satisfying $m, n \geq 1, 1 \leq q \leq m + n - 1$. If the metric \tilde{g} is degenerate on TK, then T_xK and T_xK_\perp both become degenerate orthogonal subspaces and hence there exists a subspace $\text{Rad}(TK)$ such that $TK = \text{Rad}(TK) \perp S(TK)$.

Similarly, let $S(TK^\perp)$ be a screen transversal vector bundle in TK^\perp such that $TK^\perp = \text{Rad}(TK) \perp S(TK^\perp)$. On the other hand, let $tr(TK)$ and $ltr(TK)$ be vector bundles in $\tilde{K} \big|_K$ and $S(TK^\perp)$, respectively, with the property that

\begin{equation}
tr(TK) = ltr(TK) \perp S(TK^\perp)
\end{equation}

and

\begin{equation}
T\tilde{K} \big|_K = TK \oplus tr(TK) = (\text{Rad}(TK) \oplus ltr(TK)) \perp S(TK) \perp S(TK^\perp).
\end{equation}
Further, the Gauss and Weingarten formulae are

\[\nabla_pQ = \nabla_p Q + h^l(P, Q), \quad \nabla_p V = -A_V P + \nabla^l_p V, \]

for any \(P, Q \in \Gamma(TK) \) and \(V \in \Gamma(\text{tr}(TK)) \), where \(\nabla \) and \(\nabla \) denote the Levi-Civita connection on \(\tilde{P}, \tilde{Q} \) for any \(\tilde{K} \) defined on \(\tilde{P}, \tilde{Q} \) and the torsion free linear connection defined on \(\tilde{K} \). In particular, one has

\[\begin{align*}
\nabla_p Q &= \nabla_p Q + h^l(P, Q) + h^s(P, Q), \\
\nabla_p W &= -A_W P + \nabla^l_p W + D^l(P, W), \\
\nabla_p N &= -A_N P + \nabla^l_p N + D^s(P, N),
\end{align*} \]

where \(W \in \Gamma(S(TK^\perp)) \), \(P, Q \in \Gamma(TK) \) and \(N \in \Gamma(\text{tr}(TK)) \). Further, employing Eqs. (5) and (6), we obtain

\[\tilde{g}(h^s(P, Q), W) + \tilde{g}(Q, D^l(P, W)) = g(A_W P, Q) \]

for \(P, Q \in \Gamma(TK) \) and \(W \in \Gamma(S(TK^\perp)) \).

Consider the curvature tensor \(\tilde{R} \) of \(\nabla \). Then the Codazzi equation is given as

\[\begin{align*}
(\tilde{R}(Y_1, Y_2)Y_3) &= (\nabla_{Y_1} h^l)(Y_2, Y_3) - (\nabla_{Y_2} h^l)(Y_1, Y_3) + D^l(Y_1, h^s(Y_2, Y_3)) \\
&\quad - D^l(Y_2, h^s(Y_1, Y_3)) + (\nabla_{Y_1} h^s)(Y_2, Y_3) - (\nabla_{Y_2} h^s)(Y_1, Y_3) \\
&\quad + D^s(Y_1, h^l(Y_2, Y_3)) - D^s(Y_2, h^l(Y_1, Y_3)),
\end{align*} \]

where

\[\begin{align*}
(\nabla_{Y_1} h^l)(Y_2, Y_3) &= \nabla_{Y_1}^l h^l(Y_2, Y_3) - h^s(\nabla_{Y_1} Y_2, Y_3) - h^s(Y_2, \nabla_{Y_1} Y_3), \\
(\nabla_{Y_1} h^s)(Y_2, Y_3) &= \nabla_{Y_1}^l h^s(Y_2, Y_3) - h^l(\nabla_{Y_1} Y_2, Y_3) - h^l(Y_2, \nabla_{Y_1} Y_3),
\end{align*} \]

for any \(Y_1, Y_2, Y_3 \in \Gamma(TK) \).

Definition ([8]). Consider a semi-Riemannian manifold \((\tilde{K}, \tilde{g}) \). Then a light-like submanifold \((K, g) \) of \(\tilde{K} \) is called totally umbilical if there exists a smooth transversal curvature vector field \(H \in \Gamma(tr(TK)) \) of \(K \) satisfying

\[h(Y, Z) = H g(Y, Z) \]

for \(Y, Z \in \Gamma(TK) \). According to Eqs. (5) and (6), \(K \) is totally umbilical if and only if there are smooth vector fields \(H^l \in \Gamma(tr(TK)) \) and \(H^s \in \Gamma(S(TK^\perp)) \) with the property

\[\begin{align*}
h^l(Y, Z) &= H^l g(Y, Z), \\
h^s(Y, Z) &= H^s g(Y, Z), \\
D^l(Y, W) &= 0,
\end{align*} \]

for any \(Y, Z \in \Gamma(TK) \) and \(W \in \Gamma(S(TK^\perp)) \).
2.2. Indefinite Kaehler manifolds

Consider an indefinite almost Hermitian manifold \((\tilde{K}, \tilde{J}, \tilde{g})\). Then \(\tilde{K}\) is said to be an indefinite Kaehler manifold (c.f., [1]), if

\[
\tilde{J}^2 = -I, \quad \tilde{g}(\tilde{J}Y, \tilde{J}Z) = \tilde{g}(Y, Z), \quad (\tilde{\nabla}_Y \tilde{J})Z = 0,
\]

for \(Y, Z \in \Gamma(\tilde{K})\), where \(\tilde{\nabla}\) denotes the Levi-Civita connection on \(\tilde{K}\).

Moreover, an indefinite complex space form \(\tilde{K}(c)\) is an indefinite Kaehler manifold \(\tilde{K}\) with constant holomorphic curvature \(c\) and its curvature tensor \(\tilde{R}\) is given by

\[
\tilde{R}(Y_1, Y_2)Y_3 = \frac{c}{4} \{\tilde{g}(Y_2, Y_3)Y_1 - \tilde{g}(Y_1, Y_3)Y_2 + \tilde{g}(\tilde{J}Y_2, Y_3)\tilde{J}Y_1 - \tilde{g}(\tilde{J}Y_1, Y_3)\tilde{J}Y_2
\]

\[
+ 2\tilde{g}(Y_1, \tilde{J}Y_2)\tilde{J}Y_3\}
\]

for \(Y_1, Y_2, Y_3\) vector fields on \(\tilde{K}\).

2.3. Generalized Cauchy-Riemann (GCR)-lightlike submanifolds

Definition ([9]). A real lightlike submanifold \((K, g, S(TK))\) of an indefinite Kaehler manifold \((\tilde{K}, \tilde{g}, \tilde{J})\) is said to be a generalized Cauchy-Riemann (GCR)-lightlike submanifold, if

(i) There exist sub-bundles \(D_1\) and \(D_2\) of \(\text{Rad}(TK)\) satisfying

\[
\text{Rad}(TK) = D_1 \oplus D_2, \quad \tilde{J}(D_1) = D_1, \quad \tilde{J}(D_2) \subset S(TK).
\]

(ii) There exist sub-bundles \(D_0\) and \(D'\) of \(S(TK)\) satisfying

\[
S(TK) = \{\tilde{J}D_2 \oplus D'\} \perp D_0, \quad \tilde{J}(D') = L_1 \perp L_2, \quad \tilde{J}(D_0) = D_0,
\]

where \(L_1\) and \(L_2\), respectively, denote vector subbundles of \(ltr(TK)\) and \(S(TK^+)\) and \(D_0\) is a non-degenerate distribution on \(K\). Moreover, we assume that \(M_1 = \tilde{J}L_1\) and \(M_2 = \tilde{J}L_2\).

Let \(Q, P_1\) and \(P_2\) denote the projection morphisms of \(TK\) on \(D, M_1\) and \(M_2\), respectively. Then for \(Y \in \Gamma(TK)\), we write

\[
Y = QY + P_1Y + P_2Y.
\]

Applying \(\tilde{J}\) on both sides of Eq. (15), we get

\[
\tilde{J}Y = fY + \omega P_1Y + \omega P_2Y.
\]

Eq. (16) can be re-written as

\[
\tilde{J}Y = fY + \omega Y,
\]

where \(fY\) and \(\omega Y\), respectively, denote tangential and transversal parts of \(\tilde{J}Y\). Similarly, for \(Z \in tr(TK)\), we have

\[
\tilde{J}Z = EZ + FZ,
\]

where \(EZ\) and \(FZ\), respectively, denote tangential and transversal parts of \(\tilde{J}Z\).
Lemma 2.1 ([15]). Consider a GCR-lightlike submanifold K of an indefinite Kaehler manifold \tilde{K}. Then for $Y_1, Y_2 \in \Gamma(T\tilde{K})$, one has

\begin{equation}
(\nabla_{Y_1} f)Y_2 = A_{\omega} Y_2 Y_1 + Eh(Y_1, Y_2)
\end{equation}

and

\begin{equation}
(\nabla^t_{Y_1} \omega)Y_2 = F h(Y_1, Y_2) - h(Y_1, f Y_2),
\end{equation}

where

\begin{equation}
(\nabla_{Y_1} f)Y_2 = \nabla_{Y_1} f Y_2 - f Y_2, \quad (\nabla^t_{Y_1} \omega)Y_2 = \nabla^t_{Y_1} \omega Y_2 - \omega \nabla_{Y_1} Y_2.
\end{equation}

3. GCR-lightlike warped product submanifolds

In the present part of paper, we analyze warped product GCR-lightlike submanifolds of the type $K_\perp \times_\lambda K_T$ and $K_T \times_\lambda K_\perp$ of indefinite Kaehler manifolds, where K_\perp and K_T, respectively, denote totally real and holomorphic submanifolds of an indefinite Kaehler manifold \tilde{K}. Firstly, we recall a basic result for later use.

Proposition 3.1 ([3]). For $Y_1, Y_2 \in \Gamma(TK_1)$ and $U, V \in \Gamma(TK_2)$ in a warped product manifold $K = K_1 \times_\lambda K_2$, one has

\begin{equation}
\nabla_{Y_1} Y_2 \in \Gamma(T\tilde{K}_1),
\end{equation}

\begin{equation}
\nabla_{Y_1} V = \nabla_Y V_1 = \left(\frac{Y_1}{\lambda}\right) V,
\end{equation}

\begin{equation}
\nabla_{U} V = -\frac{g(U, V)}{\lambda} \nabla \lambda.
\end{equation}

Note. In the forthcoming part of the paper, we will denote totally umbilical by t.u., warped product by w.p. and an indefinite Kaehler manifold by \tilde{K}, unless otherwise stated.

Theorem 3.2. For a t.u. GCR-lightlike submanifold K of \tilde{K}, there doesn’t exist any proper w.p. GCR-lightlike submanifold K of the type $K_\perp \times_\lambda K_T$ in \tilde{K}.

Proof. From Eq. (23), for $Y_1 \in \Gamma(T\tilde{K}_T)$ and $Z_1 \in \Gamma(T\tilde{K}_\perp)$, we have

\begin{equation}
\nabla_{Y_1} Z_1 = \nabla_{Z_1} Y_1 = (Z_1 \ln \lambda) Y_1.
\end{equation}

For $Z_1, Z_2 \in \Gamma(D')$, employing Eq. (19), we obtain $\nabla_{Z_1} Z_2 = -A_{\omega} Z_2 Z_1 - Eh(Z_1, Z_2)$. Further for $Y_1 \in \Gamma(D_0)$ and using Eqs. (5) and (25), we get $g(\nabla_{Z_1} Z_2, Y_1) = -g(A_{\omega} Z_2 Z_1, Y_1) = \tilde{g}(\nabla_{Z_1} Z_2, Y_1) = -\tilde{g}(\tilde{J}Z_2, \tilde{J}Z_2, Y_1) = 0$. As D_0 is non-degenerate, therefore $\nabla_{Z_1} Z_2 = 0$, it implies that $\nabla_{Z_1} Z_2 \in \Gamma(D')$. Thus, the distribution D' defines a totally geodesic foliation in \tilde{K}.

Assume that h^T and A^T, respectively, denote the second fundamental form and the shape operator of K_T on K, therefore, we have $g(h^T(Y_1, Y_2), Z_1) = \tilde{g}(JZ_2, a(Y_1, Y_2), Z_1) = 0$. As D_0 is non-degenerate, therefore $h^T(Y_1, Y_2) = 0$, it implies that $h^T(Y_1, Y_2) \in \Gamma(D')$. Thus, the distribution D' defines a totally geodesic foliation in \tilde{K}.
\[g(\nabla Y_1, Y_2, Z_1) = g(\nabla Y_1, Y_2, Z_1) = -\hat{g}(Y_2, \nabla Y_1, Z_1) = -g(Y_2, \nabla Y_1, Z_1) \text{ for } Y_1, Y_2 \in \Gamma(D) \text{ and } Z_1 \in \Gamma(D'). \]

Further using Eq. (25), we get
\[\hat{g}(h^T(Y_1, Y_2), Z_1) = -(Z_1 \ln \lambda)g(Y_1, Y_2). \]

Consider the second fundamental form \(\hat{h} \) of \(K_T \) in \(\tilde{K} \). Then for \(Y_1, Y_2 \in \Gamma(TK_T) \), we attain
\[\hat{h}(Y_1, Y_2) = h^T(Y_1, Y_2) + h^i(Y_1, Y_2) + h^s(Y_1, Y_2). \]

Then employing Eq. (27), for \(Z_1 \in \Gamma(D') \), we obtain
\[\hat{g}(\hat{h}(Y_1, Y_2), Z_1) = \hat{g}(h^T(Y_1, Y_2), Z_1) = -(Z_1 \ln \lambda)g(Y_1, Y_2). \]

As \(K_T \) is a holomorphic submanifold of \(\tilde{K} \), it follows that
\[\hat{h}(Y_1, JZ_2) = \hat{h}(JY_1, Y_2) = \hat{h}(JY_1, Y_2). \]

Thus from Eqs. (28) and (29), we derive
\[\hat{g}(\hat{h}(Y_1, Y_2), Z_1) = -\hat{g}(\hat{h}(JY_1, JY_2), Z_1) = (Z_1 \ln \lambda)g(Y_1, Y_2). \]

Then adding Eqs. (28) and (30), we get
\[\hat{g}(\hat{h}(Y_1, Y_2), Z_1) = 0. \]

Further employing Eqs. (27), (29) and (31), we obtain
\[\hat{g}(\hat{h}(Y_1, Y_2), JZ_1) = \hat{g}(\hat{h}(JY_1, JY_2), JZ_1) = -(Z_1 \ln \lambda)g(Y_1, Y_2) = 0. \]

Thus, we have \(\hat{g}(h(D, D), JD') = 0 \), that is, \(h(D, D) \) has no component in \(JD' \), which shows \(D \) defines totally geodesic foliation in \(\tilde{K} \). Hence, \(K = K_\perp \times \lambda K_T \) is GCR-lightlike product. \(\square \)

Next, by considering \textbf{w.p.} GCR-lightlike submanifolds of the type \(K = K_T \times \lambda K_\perp \) in \(K \), we are going to prove the following lemma.

\textbf{Lemma 3.3.} Consider a GCR-lightlike \textbf{w.p.} submanifold \(K \) of \(\tilde{K} \). Then
\begin{enumerate}
 \item \(\hat{g}(h(D_0, D_0), JD') = 0 \),
 \item \(\hat{g}(h^*(Y_1, Z_1), JZ_2) = -\hat{g}(h^*(Y_1, Z_1), JZ_2) \)
\end{enumerate}

for \(Y_1 \in \Gamma(D) \) and \(Z_1, Z_2 \in \Gamma(K_2) \).

\textit{Proof.} Employing Eq. (13), for \(Y_1 \in \Gamma(D_0) \) and \(Z_1 \in \Gamma(D') \), we get \(J\nabla Y_1, Z_1 = \nabla Y_1, JZ_1 \). Then using Eq. (5), we have \(J\nabla Y_1, Z_1 + Jh(Y_1, Z_1) = -A_{JZ_1}Y_1 + J\nabla Y_1, JZ_1 \). On considering the inner product with \(JY_2 \) for \(Y_2 \in \Gamma(D_0) \), we obtain
\[g(J\nabla Y_1, Z_1, Y_2) = -g(A_{JZ_1}Y_1, JY_2). \]

Further using Eqs. (8) and (23), we derive
\[\hat{g}(h^*(Y_1, JY_2), JZ_1) = 0. \]

As \(\hat{g}(h^*(Y_1, JY_2), JZ_1) = 0 \). Thus \(\hat{g}(h(Y_1, JY_2), JZ_1) = 0 \), which proves (i).

Next, for \(Y_1 \in \Gamma(D) \) and \(Z_1, Z_2 \in \Gamma(K_2) \), employing Eqs. (5), (13) and (23), we derive
\[\hat{g}(h^*(Y_1, Z_1), JZ_2) = \hat{g}(\nabla Z_1, Y_1, JZ_2) = -\hat{g}(\nabla Z_1, Y_1, Z_2) = g(\nabla Z_1, JY_1, Z_2) = 0. \]
which proves (ii).

In the following characterization result, we provide a relationship between the shape operator and the warping function of GCR-lightlike w.p. submanifolds of the type $K_T \times \Lambda K_\perp$ in \tilde{K}.

Theorem 3.4. Consider a t.u. GCR-lightlike submanifold K of \tilde{K} such that the totally real distribution D' is integrable. Then K is a locally GCR-lightlike w.p. submanifold if and only if

$$A_{jZ_i} Y_1 = -(\tilde{J} Y_1)(\mu) Z_1$$

for $Y_1 \in \Gamma(D), Z_1 \in \Gamma(D')$ and μ is a C^∞ function defined on K satisfying $Z_1 \mu = 0$ for $Z_1 \in \Gamma(D')$.

Proof. Let K be a t.u. GCR-lightlike w.p. submanifold of the type $K_T \times \Lambda K_\perp$. Employing Eq. (13), for $Z_1 \in \Gamma(D')$ and $Y_1 \in \Gamma(D)$, one has $\tilde{\nabla}_{Y_1} \tilde{J} Z_1 = \tilde{J} \tilde{\nabla}_{Y_1} Z_1$, which on using Eqs. (4) and (23) gives

$$-A_{jZ_i} Y_1 + \tilde{\nabla}_{Y_1}^c \tilde{J} Z_1 = \tilde{J} Y_1 (\ln \lambda) Z_1.$$

Then equating the tangential parts, we derive $A_{jZ_i} Y_1 = -(\tilde{J} Y_1)(\ln \lambda) Z_1$. Since $\mu = \ln \lambda$ is a function defined on K_T, for $Z_1 \in \Gamma(D')$, we attain $Z_1(\mu) = Z_1(\ln \lambda) = 0$.

Conversely, suppose that K is a t.u. GCR-lightlike submanifold of \tilde{K} satisfying Eq. (33). Then, Eq. (33) gives $g(A_{jZ_i} Y_1, Y_2) = -g((\tilde{J} Y_1)(\mu) Z_1, Y_2) = 0$ for $Y_1, Y_2 \in \Gamma(D)$ and $Z_1 \in \Gamma(D')$, which on employing Eq. (8), yields $\tilde{g}(h^c(Y_1, Y_2), \tilde{J} Z_1) = 0$. Thus, for $Z_1 \in \Gamma(D')$, we get $\tilde{g}(h^c(D, D), \tilde{J} Z_1) = 0$ and $\tilde{g}(h^c(D, D), \tilde{J} Z_1) = 0$. Thus

$$\tilde{g}(h(D, D), \tilde{J} Z_1) = 0,$$

which means that $h(D, D)$ has no component in $\tilde{J} D'$. This implies that D defines a totally geodesic foliation in K.

Next, on taking the inner product of Eq. (33) with respect to $Z_2 \in \Gamma(D')$ and using the hypothesis along with Eqs. (5), (13) and (23), we have

$$g(((\tilde{J} Y_1)(\mu) Z_1, Z_2) = -g(A_{jZ_i} Y_1, Z_2) = -\tilde{g}(\tilde{J} Z_1, \nabla_{Y_1} Z_2)$$

$$= -\tilde{g}(\tilde{J} Z_1, \nabla_{Z_2} Y_1) = \tilde{g}(\nabla_{Z_2} \tilde{J} Z_1, Y_1)$$

$$= -g(\nabla_{Z_2} Z_1, \tilde{J} Y_1),$$

where $Y_1 \in \Gamma(D)$ and $Z_1 \in \Gamma(D')$. Further using $g(\nabla \phi, Y_1) = Y_1 \phi$ in Eq. (34), we derive

$$g(\nabla_{Z_2} Z_1, \tilde{J} Y_1) = -g(\nabla \phi, \tilde{J} Y_1) g(Z_1, Z_2).$$
Considering the second fundamental form h' and the induced connection ∇' of D' on K, for $Y_1 \in \Gamma(D)$ and $Z_1, Z_2 \in \Gamma(D')$, one has

$$g(h'(Z_1, Z_2), J\tilde{Y}_1) = g(\nabla_{Z_2}Z_1 - \nabla_{Z_1}Z_2, J\tilde{Y}_1) = g(\nabla_{Z_2}Z_1, J\tilde{Y}_1).$$

From Eqs. (35) and (36), we obtain

$$g(h'(Z_1, Z_2), J\tilde{Y}_1) = -g(\nabla_{J\mu}, J\tilde{Y}_1)g(Z_1, Z_2).$$

Then the property of non-degeneracy of D_0 provides

$$h'(Z_1, Z_2) = -\nabla_{J\mu}g(Z_1, Z_2).$$

Hence D' becomes totally umbilical in K and clearly, by hypothesis, D' is integrable. Then using Eq. (38) and the condition $Z_1\mu = 0$ for each $Z_1 \in \Gamma(D')$ gives that each leaf of D' is an intrinsic sphere in K. Thus from the result of [11], which states "If the tangent bundle of a Riemannian manifold K is an orthogonal sum $TK = K_0 \oplus K_1$ of non-trivial vector sub-bundles such that K_1 is spherical and its orthogonal complement K_0 is auto-parallel, then K is locally isometric to a w.p. $K_0 \times K_1$", we get that K is locally GCR-lightlike w.p. of the type $K_T \times K_\perp$ in K, where $\lambda = e^\mu$.

Example 3.5. Let K be an 8-dimensional submanifold in (R^4_1, \tilde{g}) with

$$x^1 = u^1 - u^2, \ x^2 = u^1 + u^2, \ x^3 = u^3, \ x^4 = u^5, \ x^5 = -u^6,$$

$$x^6 = u^7, \ x^7 = \sqrt{2}u^8, \ x^8 = \sqrt{2}u^9, \ x^9 = u^{10}, \ x^{11} = u^{12}u^6, \ x^{12} = u^{13}u^7, \ x^{13} = u^{14}u^8, \ x^{14} = u^7u^8, \text{ where } u^8 \in R - \{\frac{\pi}{2}, \ n \in Z\}$$

and g is of signature $(-, +)$. Then TK is spanned by $Z_1, Z_2, Z_3, Z_4, Z_5, Z_6, Z_7, Z_8$, such that

$$Z_1 = \partial x_1 + \partial x_2, \ Z_2 = -\partial x_1 + \partial x_2,$$

$$Z_3 = \partial x_3 + \partial x_6 + \sqrt{2}\partial x_7, \ Z_4 = \sqrt{2}\partial x_8, \ Z_5 = \partial x_4 - \partial x_5,$$

$$Z_6 = \partial x_9 + \cos u^8\partial x_{11} + \sin u^8\partial x_{13}, \ Z_7 = \partial x_{10} + \cos u^8\partial x_{12} + \sin u^8\partial x_{14},$$

$$Z_8 = -u^6\sin u^8\partial x_{11} - u^7\sin u^8\partial x_{12} + u^6\cos u^8\partial x_{13} + u^7\cos u^8\partial x_{14}.$$

Clearly, K is a 3-lightlike submanifold with $Rad(TK) = \text{Span}\{Z_1, Z_2, Z_3\}$. As $JZ_1 = Z_2$, we have $D_1 = \text{Span}\{Z_1, Z_2\}$ and $JZ_2 = Z_4 + Z_5 \in \Gamma(S(TK))$, obtaining that $D_2 = \text{Span}\{Z_3\}$. Moreover, $JZ_4 = Z_7$, thus $D_0 = \text{Span}\{Z_6, Z_7\}$. Further, by direct calculations, $S(TK^\perp) = \text{Span}\{W = u^7\sin u^8\partial x_{11} - u^6\sin u^8\partial x_{12} - u^7\cos u^8\partial x_{13} + u^6\cos u^8\partial x_{14}\}$ and $JZ_8 = W$. Therefore $L_2 = S(TK^\perp)$. Moreover, $\text{itr}(TK)$ is spanned by

$$N_1 = \frac{1}{2}(-\partial x_1 + \partial x_2), \ N_2 = \frac{1}{2}(\partial x_1 + \partial x_2), \ N_3 = \frac{1}{4}(\partial x_3 + \partial x_6 - \sqrt{2}\partial x_7),$$

where $\text{Span}\{N_1, N_2\}$ is invariant with respect to J and $JN_3 = -\frac{1}{2}Z_4 + \frac{1}{4}Z_5$. Thus, $L_1 = \text{Span}\{N_3\}$ and $D' = \text{Span}\{JN_3, JW\}$. Therefore, K is a proper GCR-lightlike submanifold of R_1^4. Here, it is clear that D' is integrable. Now,
Assume warped product, in terms of canonical structures. GCR are established forcing the product. Therefore, in the present part of paper, some characterization results are generalizations of product manifolds, it is obvious to search for conditions reducing the GCR-lightlike submanifold of the type $K_T \times_\lambda K_\perp$ in R^4_{14}, with warping function $\lambda = \sqrt{(u^0)^2 + (u^1)^2}$.

4. GCR-lightlike warped product submanifolds and the canonical structures

In [15], Kumar et al. proved several classification theorems enabling a GCR-lightlike submanifold to be a GCR-lightlike product. Since warped products are generalizations of product manifolds, it is obvious to search for conditions reducing the GCR-lightlike submanifold of K to GCR-lightlike warped product. Therefore, in the present part of paper, some characterization results are established forcing the GCR-lightlike submanifold to be a GCR-lightlike warped product, in terms of canonical structures.

Lemma 4.1. Assume $K = K_T \times_\lambda K_\perp$ is a GCR-lightlike w.p. submanifold of \tilde{K}. Then

$$\nabla_{Z_1} fY_1 = fY_1 (\ln \lambda) Z_1,$$

$$\nabla_{Y_2} fZ_1 = f(\nabla \ln \lambda) g(Y_2, Z_1),$$

for $Y_1 \in \Gamma(D), Y_2 \in \Gamma(TK)$ and $Z_1 \in \Gamma(D')$, where $\nabla (\ln \lambda)$ denotes gradient of $\ln \lambda$.

Proof. Employing Eqs. (21) and (23), for $Y_1 \in \Gamma(D)$ and $Z_1 \in \Gamma(D')$, we obtain $(\nabla_{Z_1} fY_1 = \nabla_{Z_1} fY_1 = fY_1 (\ln \lambda) Z_1$.

Next, from Eq. (21) we get $(\nabla_{Y_2} fZ_1 = -f\nabla_{Y_2} Z_1$, where $Y_2 \in \Gamma(TK)$ and $Z_1 \in \Gamma(D')$, which implies that $\nabla_{Y_2} fZ_1 \in \Gamma(D)$. Then, we attain

$$g((\nabla_{Y_2} fZ_1, Y_1) = -g(f\nabla_{Y_2} Z_1, Y_1) = g(\nabla_{Y_2} Z_1, fY_1)$$

$$= \tilde{g}(\nabla_{Y_2} Z_1, fY_1) = -g(Z_1, \nabla_{Y_2} fY_1)$$

$$= -fY_1 (\ln \lambda) g(Z_1, Y_2)$$

for $Y_1 \in \Gamma(D_0)$. Thus, the result directly follows by employing the definition of gradient for λ and property of non-degeneracy of D_0. □

Theorem 4.2. Consider a GCR-lightlike submanifold K of \tilde{K} such that the totally real distribution D' is integrable. Then K is a locally GCR-lightlike w.p. submanifold if and only if

$$\nabla_{Y_1} fY_2 = (fY_2)\mu PY_1 + g(PY_1, PY_2) \tilde{J}(\nabla \mu),$$

for $Y_1, Y_2 \in \Gamma(TK)$, where μ is a C^∞ function defined on K satisfying $Z_1 \mu = 0$ for $Z_1 \in \Gamma(D')$.
Proof. Let K be a GCR-lightlike $\mathbf{w.p.}$ submanifold of \mathring{K}. Then, for $Y_1, Y_2 \in \Gamma(TK)$, we have
\begin{equation}
(\nabla_{Y_1} f)Y_2 = (\nabla_{QY_1} f)QY_2 + (\nabla_{PY_1} f)PY_2 + (\nabla_{Y_1} f)PY_2.
\end{equation}
Since D defines a totally geodesic foliation in K, Eq. (19) gives
\begin{equation}
(\nabla_{QY_1} f)QY_2 = 0.
\end{equation}
Further using Lemma 4.1, we get
\begin{equation}
(\nabla_{PY_1} f)PY_2 = f(QY_2)(\ln \lambda)PY_1,
\end{equation}
\begin{equation}
(\nabla_{Y_1} f)PY_2 = g(Y_1, PY_2)\nabla(\ln \lambda) = g(PY_1, PY_2)\nabla(\ln \lambda).
\end{equation}
Thus from Eqs. (41)–(44), we derive Eq. (40). As $\mu = \ln \lambda$ is a function defined on K_T, it follows that $Z_1(\mu) = 0$ for $Z_1, Z_2 \in \Gamma(D')$.

Conversely, assume K is a GCR-lightlike submanifold of \mathring{K} satisfying Eq. (40). For $Y_1, Y_2 \in \Gamma(D)$, Eq. (40) yields $(\nabla_{Y_1} f)Y_2 = 0$. Further using Eq. (19), we get $Eh(Y_1, Y_2) = 0$, which shows that $h(Y_1, Y_2)$ has no component in ∇^D, thus D defines a totally geodesic foliation in K.

Next, for $Y_1, Y_2 \in \Gamma(D')$, employing Eq. (40), we get
\begin{equation}
(\nabla_{Y_1} f)Y_2 = g(PY_1, PY_2)\nabla^D\mu.
\end{equation}
Further, taking the inner product of Eq. (45) with $Y_3 \in \Gamma(D_0)$, we derive
\begin{equation}
g((\nabla_{Y_1} f)Y_2, Y_3) = g(PY_1, PY_2)g(\nabla^D\mu, Y_3) = -g(PY_1, PY_2)g(\nabla^D\mu, \nabla^D\mu, Y_3).
\end{equation}
Also for $Y_1, Y_2 \in \Gamma(D')$ and $Y_3 \in \Gamma(D_0)$, from Eq. (19), we have
\begin{equation}
g((\nabla_{Y_1} f)Y_2, Y_3) = g(A_{Y_1}Y_2, Y_3) = -g(\nabla^D_{Y_1}Y_2, Y_3) = g(\nabla^D_{Y_1}Y_2, \nabla^D\mu, Y_3).
\end{equation}
From Eqs. (46) and (47), we obtain
\begin{equation}
g((\nabla_{Y_1}Y_2, Y_3) = -g(PY_1, PY_2)g(\nabla^D\mu, Y_3).
\end{equation}
Let h' and ∇', respectively, denote the second fundamental form and the induced connection of D' on K. Then, for $Y_1, Y_2 \in \Gamma(D')$ and $Y_3 \in \Gamma(D)$, one has
\begin{equation}
g(h'(Y_1, Y_2), \nabla^D\mu) = g(\nabla_{Y_1}Y_2 - \nabla'_{Y_1}Y_2, \nabla^D\mu) = g(\nabla_{Y_1}Y_2, \nabla'\mu).
\end{equation}
From Eqs. (48) and (49), we derive
\begin{equation}
g(h'(Y_1, Y_2), \nabla'\mu) = -g(PY_1, PY_2)g(\nabla^D\mu, \nabla'\mu).
\end{equation}
Then, using the non-degeneracy of D_0, we get $h'(Y_1, Y_2) = -\nabla^D\mu g(PY_1, PY_2)$, which yields that the distribution D' is totally umbilical in K. By hypothesis, D' is integrable and $Z_1\mu = 0$ for $Z_1 \in \Gamma(D')$, therefore each leaf of D' is an intrinsic sphere. Therefore, using a similar argument as in Theorem 3.4, K is a locally GCR-lightlike $\mathbf{w.p.}$ of the type $K_T \times \lambda K_\perp$ in \mathring{K} with warping function $\lambda = e^{\mu}$. \qed
Theorem 4.3. A GCR-lightlike submanifold K of \bar{K} with integrable totally real distribution D' is a locally GCR-lightlike w.p. submanifold if and only if
\begin{equation}
\tilde{g}(\nabla^\omega_{Y_1}Y_2, JZ_1) = -QY_2(\mu)g(Y_1, Z_1),
\end{equation}
for $Z_1 \in \Gamma(D')$ and $Y_1, Y_2 \in \Gamma(TK)$, where μ is a C^∞ function defined on K satisfying $Z_1\mu = 0$ for $Z_1 \in \Gamma(D')$.

Proof. Let K be a GCR-lightlike w.p. submanifold of \bar{K}. Clearly, by hypothesis, D' defines a totally geodesic foliation in K. Therefore, from Eq. (21), for $Z_1 \in \Gamma(D')$ and $Y_1, Y_2 \in \Gamma(D)$, we get
\begin{equation}
\tilde{g}(\nabla^\omega_{Y_1}Y_2, JZ_1) = \tilde{g}(-\omega \nabla Y_1 Y_2, JZ_1) = -g(\nabla Y_1 Y_2, Z_1) = 0.
\end{equation}

Then, for $Y_1, Z_1 \in \Gamma(D')$ and $Y_2 \in \Gamma(D)$, from Eq. (20), we obtain
\begin{equation}
\tilde{g}(\nabla^\omega_{Y_1}Y_2, JZ_1) = -\tilde{g}(h(Y_1, fY_2), JZ_1) = \tilde{g}(\nabla Y_1 fY_2, JZ_1) = -QY_2(\ln \lambda)g(Y_1, Z_1).
\end{equation}

Next, for $Y_1 \in \Gamma(D)$ and $Y_2 \in \Gamma(D')$ or $Y_1, Y_2 \in \Gamma(D')$, using Eq. (20), we have
\begin{equation}
\tilde{g}(\nabla^\omega_{Y_1}Y_2, JZ_1) = \tilde{g}(Fh(Y_1, Y_2), JZ_1) = 0,
\end{equation}
where $Z_1 \in \Gamma(D')$. Thus from Eqs. (52)–(54), we derive Eq. (51). As $\mu = \ln \lambda$ is a function defined on K_T, we get $Z_1(\mu) = Z_1(\ln \lambda) = 0$ for $Z_1 \in \Gamma(D')$.

Conversely, let K be a GCR-lightlike submanifold of \bar{K} with integrable distribution D', satisfying Eq. (51). For any $Y_1, Y_2 \in \Gamma(D)$ and $Z_1 \in \Gamma(D')$, using Eq. (51), we get $\tilde{g}(\nabla Y_1 Y_2, JZ_1) = 0$, thus $g(\nabla Y_1 Y_2, Z_1) = 0$, which gives $\nabla Y_1 Y_2 \in \Gamma(D)$. Thus, D defines a totally geodesic foliation in K. On the other hand, for any $Y_2 \in \Gamma(D_0)$ and $Y_1, Z_1 \in \Gamma(D')$, from Eq. (51), we have
\begin{equation}
-Y_2(\mu)g(Y_1, Z_1) = \tilde{g}(\nabla^\omega_{Y_1}Y_2, JZ_1) = -\tilde{g}(\omega \nabla Y_1 Y_2, JZ_1) = -g(\nabla Y_1 Y_2, Z_1) = g(Y_2, \nabla Y_2 Z_1).
\end{equation}

Then, from the definition of gradient, one has $g(\nabla \phi, Y_2) = Y_2 \phi$, and using it in Eq. (55), we obtain
\begin{equation}
g(\nabla Y_1 Z_1, Y_2) = -g(\nabla \mu, Y_2)g(Y_1, Z_1).
\end{equation}

Let h' and ∇', respectively, denote the second fundamental form and the induced connection of D' on K, then
\begin{equation}
g(h'(Y_1, Z_1), Y_2) = g(\nabla Y_1 Z_1 - \nabla Y_1 Z_1, Y_2) = g(\nabla Y_1 Z_1, Y_2),
\end{equation}
where $Y_1, Z_1 \in \Gamma(D')$ and $Y_2 \in \Gamma(D_0)$. Now from Eqs. (56) and (57), we derive
\begin{equation}
g(h'(Y_1, Z_1), Y_2) = -g(\nabla \mu, Y_2)g(Y_1, Z_1).
\end{equation}

Then, using the non-degeneracy of D_0, we have
\begin{equation}
h'(Y_1, Z_1) = -\nabla \mu g(Y_1, Z_1),
\end{equation}
which implies that D' is totally umbilical in K, and by hypothesis, it is clear that D' is integrable. Further, in view of the condition that $Z_1\mu = 0$ for
$Z_1 \in \Gamma(D')$, each leaf of D' is an intrinsic sphere. Therefore, using similar argument as in Theorem 3.4, K is a locally GCR-lightlike w.p. submanifold of the type $K_T \times K_\perp$ in \tilde{K} with warping function $\lambda = e^{\mu}$. This completes the proof. □

Next, we present the following lemma.

Lemma 4.4. Let K be a proper GCR-lightlike w.p. submanifold of \tilde{K}. Then

\begin{align}
\tilde{g}(h^*(\tilde{J}Y_1, Z_1), \tilde{J}Z_1) &= (Y_1 \ln \lambda)||Z_1||^2, \\
\tilde{g}(h^*(Y_1, Z_1), \tilde{J}Z_1) &= -(\tilde{J}Y_1 \ln \lambda)||Z_1||^2,
\end{align}

for $Z_1 \in \Gamma(D')$ and $Y_1 \in \Gamma(D)$.

Proof. Employing Eqs. (5), (13) and (23), for $Y_1 \in \Gamma(D)$ and $Z_1 \in \Gamma(D')$, we obtain

\[\tilde{g}(h^*(\tilde{J}Y_1, Z_1), \tilde{J}Z_1) = \tilde{g}(\tilde{\nabla}_Z Y_1, \tilde{J}Z_1) = (Y_1 \ln \lambda)\tilde{g}(Z_1, \tilde{J}Z_1)\]

which proves (60). Now, using again Eqs. (5), (13) and (23),

\[\tilde{g}(h^*(Y_1, Z_1), \tilde{J}Z_1) = \tilde{g}(\tilde{\nabla}_Z Y_1, \tilde{J}Z_1) = -\tilde{g}(Y_1, \tilde{\nabla}_Z, \tilde{J}Z_1)\]

which proves (61). □

Theorem 4.5. Let K be a proper GCR-lightlike w.p. submanifold of \tilde{K}. Then

\[||h^*(\tilde{J}Y_1, Z_1)||^2 + ||h^*(Y_1, Z_1)||^2 = (Y_1 \ln \lambda)^2||Z_1||^2 + (\tilde{J}Y_1 \ln \lambda)^2||Z_1||^2 + 2\tilde{g}(\tilde{J}h^*(Y_1, Z_1), h^*(\tilde{J}Y_1, Z_1))\]

for $Z_1 \in \Gamma(D')$ and $Y_1 \in \Gamma(D)$.

Proof. Employing Eqs. (5), (23) and (60), for $Z_1 \in \Gamma(D')$ and $Y_1 \in \Gamma(D)$, we derive

\[||h^*(\tilde{J}Y_1, Z_1)||^2 = \tilde{g}(h^*(\tilde{J}Y_1, Z_1), h^*(\tilde{J}Y_1, Z_1)) = \tilde{g}(\tilde{\nabla}_Z Y_1, h^*(\tilde{J}Y_1, Z_1))\]

which concludes the proof.
Similarly, from Eqs. (5), (23) and (61), we obtain

\[
\tag{63}
(Y_1 \ln \lambda)\bar{g}(\bar{J}Z_1, h^*(\bar{J}Y_1, Z_1)) + \bar{g}(\bar{J}h^*(Y_1, Z_1), h^*(\bar{J}Y_1, Z_1))
\]

Similarly, from Eqs. (5), (23) and (61), we obtain

\[
||h^*(Y_1, Z_1)||^2 = \bar{g}(h^*(Y_1, Z_1), h^*(Y_1, Z_1)) = \bar{g}(\bar{\nabla}_{Z_1}Y_1, h^*(Y_1, Z_1))
\]

\[
= \bar{g}(\bar{\nabla}_{Z_1}Y_1, \bar{J}h^*(Y_1, Z_1)) = \bar{g}(\bar{\nabla}_{Z_1}Y_1, \bar{J}h^*(Y_1, Z_1))
\]

\[
= \bar{g}(\bar{\nabla}_{Z_1}Y_1 + h^*(Z_1, \bar{J}Y_1), \bar{J}h^*(Y_1, Z_1))
\]

\[
= (\bar{J}Y_1 \ln \lambda)\bar{g}(Z_1, \bar{J}h^*(Y_1, Z_1)) + \bar{g}(\bar{J}h^*(Y_1, Z_1), h^*(\bar{J}Y_1, Z_1))
\]

\[
\tag{64}
= (\bar{J}Y_1 \ln \lambda)^2||Z_1||^2 + \bar{g}(\bar{J}h^*(Y_1, Z_1), h^*(\bar{J}Y_1, Z_1))
\]

Hence the result follows from Eqs. (63) and (64).

Consider a semi-Riemannian manifold \((\bar{K}, \bar{g})\) with a smooth function \(\lambda\) defined on \(\bar{K}\). Then the Hessian of \(\lambda\) is

\[
\tag{65}
H^\lambda(Y, Z) = YZ\lambda - (\nabla_Y Z)\lambda
\]

for any \(Y, Z \in \Gamma(\mathcal{T}\bar{K})\).

Next, we give a characterization result of GCR-lightlike warped products in \(\bar{K}(c)\) involving the second fundamental form and the Hessian of the warping function \(\lambda\).

Theorem 4.6. Let \(K\) be a GCR-lightlike w.p. submanifold in \(\bar{K}(c)\). Then for \(Z_1 \in \Gamma(D')\) and \(Y_1 \in \Gamma(D)\), one has

\[
||h^*(\bar{J}Y_1, Z_1)||^2 + ||h^*(Y_1, Z_1)||^2 = \{H^{in, \lambda}(Y_1, Y_1) + H^{in, \lambda}(\bar{J}Y_1, \bar{J}Y_1)||Z_1||^2
\]

\[\]

\[+ \frac{c}{2} \{\bar{g}(\bar{J}Y_1, Z_1)^2 + \bar{g}(Y_1, Z_1)^2 + ||Y_1||^2||Z_1||^2\}
\]

\[\]

\[+ (\bar{J}Y_1 \ln \lambda)^2||Z_1||^2 + (\bar{J}Y_1 \ln \lambda)^2||Z_1||^2
\]

\[\]

\[+ \bar{g}(A_{h^*(\bar{J}Y_1, Z_1)}Y_1, \bar{J}Z_1) - \bar{g}(A_{h^*(Y_1, Z_1)}\bar{J}Y_1, \bar{J}Z_1)
\]

\[\]

\[+ \bar{g}(A_{h^*(\bar{J}Y_1, Z_1)}Y_1, \bar{J}Z_1) - \bar{g}(A_{h^*(Y_1, Z_1)}\bar{J}Y_1, \bar{J}Z_1).
\]

Proof. For \(Z_1 \in \Gamma(D')\) and \(Y_1 \in \Gamma(D)\), taking in account Eq. (14), we get

\[
\tag{67}
\bar{R}(Y_1, \bar{J}Y_1, Z_1, JZ_1) = -\frac{c}{2} \{\bar{g}(\bar{J}Y_1, Z_1)^2 + \bar{g}(Y_1, Z_1)^2 + ||Y_1||^2||Z_1||^2\}
\]

On the other hand, taking the inner product of Codazzi Eq. (9) with respect to \(JZ_1\), for \(Z_1 \in \Gamma(D')\) and \(Y_1 \in \Gamma(D)\), we obtain

\[
\bar{R}(Y_1, \bar{J}Y_1, Z_1, JZ_1)
\]

\[
= \bar{g}(\bar{\nabla}_{\bar{J}Y_1}h^*(\bar{J}Y_1, Z_1), JZ_1) - \bar{g}(h^*(\bar{\nabla}_{\bar{J}Y_1}Y_1, Z_1), JZ_1)
\]

\[
- \bar{g}(h^*(\bar{J}Y_1, \bar{\nabla}_{\bar{J}Y_1}Z_1), JZ_1) - \bar{g}(\bar{\nabla}_{\bar{J}Y_1}h^*(Y_1, Z_1), JZ_1)
\]

\[
+ \bar{g}(h^*(\bar{\nabla}_{\bar{J}Y_1}Y_1, Z_1), JZ_1) + \bar{g}(h^*(Y_1, \bar{\nabla}_{\bar{J}Y_1}Z_1), JZ_1)
\]
\begin{equation}
+ \tilde{g}(D^s(Y_1,h^s(JY_1,Z_1)),\tilde{J}Z_1) - \tilde{g}(D^s(\tilde{J}Y_1,h^s(Y_1,Z_1)),\tilde{J}Z_1).
\end{equation}

Next considering Eq. (6), we get
\begin{equation}
\tilde{g}(\tilde{\nabla}_{Y_1}^s h^s(JY_1,Z_1),\tilde{J}Z_1) = \tilde{g}(\tilde{A}_{h^s(JY_1,Z_1)}Y_1,\tilde{J}Z_1)
+ \tilde{g}(D^s(h^s(JY_1,Z_1),Y_1),\tilde{J}Z_1)
+ \tilde{g}(\tilde{\nabla}_{Y_1}^s h^s(JY_1,Z_1),\tilde{J}Z_1),
\end{equation}

which further yields
\begin{equation}
\tilde{g}(\tilde{\nabla}_{Y_1}^s h^s(JY_1,Z_1),\tilde{J}Z_1) = \tilde{g}(\tilde{\nabla}_{Y_1}^s h^s(JY_1,Z_1),\tilde{J}Z_1)
+ \tilde{g}(\tilde{A}_{h^s(JY_1,Z_1)}Y_1,\tilde{J}Z_1).
\end{equation}

Since \(\tilde{\nabla} \) is a metric connection on \(\tilde{K} \), we have
\begin{equation}
\tilde{g}(\tilde{\nabla}_{Y_1} h^s(JY_1,Z_1),\tilde{J}Z_1) = Y_1 \tilde{g}(h^s(JY_1,Z_1),\tilde{J}Z_1)
- \tilde{g}(h^s(JY_1,Z_1),\tilde{\nabla}_{Y_1} Z_1),
\end{equation}

where \(Z_1 \in \Gamma(D^s) \) and \(Y_1 \in \Gamma(D) \). Further, employing Eqs. (69) and (70), we attain
\begin{equation}
\tilde{g}(\tilde{\nabla}_{Y_1}^s h^s(JY_1,Z_1),\tilde{J}Z_1) = Y_1 \tilde{g}(h^s(JY_1,Z_1),\tilde{J}Z_1)
- \tilde{g}(h^s(JY_1,Z_1),\tilde{\nabla}_{Y_1} Z_1)
+ \tilde{g}(\tilde{A}_{h^s(JY_1,Z_1)}Y_1,\tilde{J}Z_1).
\end{equation}

Then, employing Eqs. (5), (23) and (60) in Eq. (71), we derive
\begin{equation}
\tilde{g}(\tilde{\nabla}_{Y_1}^s h^s(JY_1,Z_1),\tilde{J}Z_1) = Y_1 \{(Y_1 \ln \lambda)||Z_1||^2\}
- \tilde{g}(h^s(JY_1,Z_1),\tilde{\nabla}_{Y_1} Z_1)
+ \tilde{g}(\tilde{A}_{h^s(JY_1,Z_1)}Y_1,\tilde{J}Z_1)
\end{equation}

which, on using Eq. (63), reduces to
\begin{equation}
\tilde{g}(\nabla_{Y_1}^s h^s(JY_1,Z_1),\tilde{J}Z_1) = Y_1 \{(Y_1 \ln \lambda)||Z_1||^2 + 2(Y_1 \ln \lambda)^2||Z_1||^2\}
- \{h^s(JY_1,Z_1)||Z_1||^2\}
\end{equation}

Similarly, one has
\begin{equation}
\tilde{g}(\nabla_{\tilde{Y}_1}^s h^s(Y_1,Z_1),\tilde{J}Z_1) = - \{h^s(JY_1,Z_1)||Z_1||^2 - 2\tilde{Y}_1 (\tilde{J}Y_1 \ln \lambda)||Z_1||^2\}
\end{equation}
Then replacing K_T in $Y_1 \in \Gamma(TK_T)$, we get $\nabla_{Y_1} Y_1 \in \Gamma(TK_T)$. Then replacing Y_1 by $\nabla_{Y_1} Y_1$ in Eq. (74), we obtain
\[(75) \quad g(A_{jj'}, Z_1, JZ_1) = (\nabla_{Y_1} Y_1 \ln \lambda) \langle |Z_1|^2 \rangle + \tilde{g}(D'(Z_1, JZ_1), JY_1) .\]

Also, one has $h(Y_1, V) = 0$ and $\nabla_{Y_1} V \in \Gamma(D)$ for $Y_1, V \in \Gamma(D)$. Then, using Eqs. (5), (6) and (13), for $Z_1 \in \Gamma(D')$ and $Y_1 \in \Gamma(D)$, we get
\[(76) \quad g(A_{jj'}, Z_1, J\nabla_{Y_1} Y_1) = \tilde{g}(A_{jj'}, Z_1, J\nabla_{Y_1} Y_1) = \tilde{g}(A_{jj'}, Z_1, J\nabla_{Y_1} Y_1) \]
\[= g(A_{jj'}, Z_1, \nabla_{Y_1} Y_1) \]
\[= - \tilde{g}(\nabla_{Y_1} Y_1, JY_1) + \tilde{g}(D'(Z_1, JY_1), \nabla_{Y_1} Y_1) \]
\[= g(JZ_1, \nabla_{Y_1} Y_1) = \tilde{g}(h^*(\nabla_{Y_1} Y_1, Z_1), JZ_1) + \tilde{g}(D'(Z_1, JZ_1), \nabla_{Y_1} Y_1) .\]

Then, from Eqs. (75) and (76), we attain
\[(77) \quad \tilde{g}(h^*(\nabla_{Y_1} Y_1, Z_1), JZ_1) = (\nabla_{Y_1} Y_1 \ln \lambda) \langle |Z_1|^2 \rangle .\]

By writing Y_1 in place of JY_1 in Eq. (77), we get
\[(78) \quad \tilde{g}(h^*(\nabla_{Y_1} Y_1, Z_1), JZ_1) = -(\nabla_{Y_1} Y_1 \ln \lambda) \langle |Z_1|^2 \rangle .\]

From Eqs. (23) and (60), we get
\[(79) \quad \tilde{g}(h^*(JY_1, \nabla_{Y_1} Y_1, Z_1) = (Y_1 \ln \lambda) \langle h^*(JY_1, Z_1), JZ_1 \rangle \]
\[= (Y_1 \ln \lambda) \langle |Z_1|^2 \rangle .\]

In the same way, using Eqs. (23) and (61), we derive
\[(80) \quad \tilde{g}(h^*(Y_1, \nabla_{Y_1} Y_1, Z_1) = -(JY_1 \ln \lambda) \langle h^*(Y_1, Z_1), JZ_1 \rangle \]
\[= -(JY_1 \ln \lambda) \langle |Z_1|^2 \rangle .\]

Further, considering Eqs. (5), (8) and (13), we obtain
\[
\tilde{g}(D^*(Y_1, h^*(JY_1, Z_1)), JZ_1)
= \tilde{g}(\nabla_{Y_1} h^*(JY_1, Z_1), JZ_1) + \tilde{g}(A_{h^*(JY_1, Z_1)} Y_1, JZ_1)
= - \tilde{g}(\nabla_{Y_1} JZ_1, h^*(JY_1, Z_1)) + \tilde{g}(A_{h^*(JY_1, Z_1)} Y_1, JZ_1)
= - \tilde{g}(J\nabla_{Y_1} Y_1, h^*(JY_1, Z_1)) + \tilde{g}(A_{h^*(JY_1, Z_1)} Y_1, JZ_1)
\]
we derive

\[g = g(\hat{J}^{\nu}_Y, h(\hat{J}Y_1, Z_1)) + g(A_h(\hat{J}Y_1, Z_1), \hat{J}Z_1) \]

\[- g(\hat{J}h(\hat{J}Y_1, Z_1), h(\hat{J}Y_1, Z_1)) \]

(81)

Similarly,

\[\bar{g}(D^*(\hat{J}Y_1, h(Y_1, Z_1)), \hat{J}Z_1) = g(A_{h^*}(Y_1, Z_1), \hat{J}Z_1). \]

Now, employing Eqs. (72), (73), (77), (78), (79), (80), (81) and (82) in Eq. (68), we derive

\[\tilde{R}(Y_1, \tilde{J}Y_1, Z_1, \tilde{J}Z_1) \]

\[= \{ Y_1(Y_1 \ln \lambda) - \nabla Y_1 \ln \lambda + \tilde{J}Y_1(\tilde{J}Y_1 \ln \lambda) \} \Vert Z_1 \Vert^2 \]

\[- \nabla_{\tilde{J}Y_1} \tilde{J}Y_1 \ln \lambda \Vert Z_1 \Vert^2 + (Y_1 \ln \lambda)^2 \Vert Z_1 \Vert^2 + (\tilde{J}Y_1 \ln \lambda)^2 \Vert Z_1 \Vert^2 \]

\[- ||h^*(\tilde{J}Y_1, Z_1)||^2 - ||h^*(Y_1, Z_1)||^2 + g(A_{h^*}(Y_1, Z_1), \tilde{J}Z_1) \]

\[- g(A_{h^*}(Y_1, Z_1), \tilde{J}Y_1) = \tilde{g}(A_{h^*}(Y_1, Z_1), \tilde{J}Y_1, \tilde{J}Z_1) \]

(82)

Next, using Eq. (65) in Eq. (83), we obtain

\[\tilde{R}(Y_1, \tilde{J}Y_1, Z_1, \tilde{J}Z_1) \]

\[= \{ \bar{H}^{\ln \lambda}(Y_1, Y_1) + \bar{H}^{\ln \lambda}(\tilde{J}Y_1, \tilde{J}Y_1) \} \Vert Z_1 \Vert^2 + (Y_1 \ln \lambda)^2 \Vert Z_1 \Vert^2 \]

\[+ (\tilde{J}Y_1 \ln \lambda)^2 \Vert Z_1 \Vert^2 - ||h^*(\tilde{J}Y_1, Z_1)||^2 - ||h^*(Y_1, Z_1)||^2 \]

\[+ \tilde{g}(A_{h^*}(Y_1, Z_1), \tilde{J}Z_1) - g(A_{h^*}(Y_1, Z_1), \tilde{J}Y_1) \]

(84)

Further, from Eqs. (67) and (84), we derive

\[- \frac{c}{2} \{ \tilde{g}(\tilde{J}Y_1, Z_1)^2 + g(Y_1, Z_1)^2 + ||Y_1||^2 \Vert Z_1 \Vert^2 \} \]

\[= \bar{H}^{\ln \lambda}(Y_1, Y_1) \Vert Z_1 \Vert^2 + \bar{H}^{\ln \lambda}(\tilde{J}Y_1, \tilde{J}Y_1) \Vert Z_1 \Vert^2 \]

\[+ ((Y_1 \ln \lambda)^2 + (\tilde{J}Y_1 \ln \lambda)^2) \Vert Z_1 \Vert^2 \]

\[- ||h^*(\tilde{J}Y_1, Z_1)||^2 - ||h^*(Y_1, Z_1)||^2 \]

\[+ \tilde{g}(A_{h^*}(Y_1, Z_1), \tilde{J}Z_1) - \tilde{g}(A_{h^*}(Y_1, Z_1), \tilde{J}Y_1) \]

(85)

which leads to

\[||h^*(\tilde{J}Y_1, Z_1)||^2 + ||h^*(Y_1, Z_1)||^2 \]

\[= \{ \bar{H}^{\ln \lambda}(Y_1, Y_1) + \bar{H}^{\ln \lambda}(\tilde{J}Y_1, \tilde{J}Y_1) \} \Vert Z_1 \Vert^2 \]

\[+ \frac{c}{2} \{ \tilde{g}(\tilde{J}Y_1, Z_1)^2 + g(Y_1, Z_1)^2 + ||Y_1||^2 \Vert Z_1 \Vert^2 \} \]
A NOTE ON GCR-LIGHTLIKE WARPED PRODUCT SUBMANIFOLDS

\[+ \{(Y_1 \ln \lambda)^2 + (\tilde{J}Y_1 \ln \lambda)^2\}||Z_1||^2 \\
+ \tilde{g}(A_{h^*(\tilde{J}Y_1,Z_1)}Y_1, \tilde{J}Z_1) - \tilde{g}(A_{h^*(Y_1,Z_1)}\tilde{J}Y_1, \tilde{J}Z_1) \\
+ \tilde{g}(A_{h^*(\tilde{J}Y_1,Z_1)}Y_1, \tilde{J}Z_1) - \tilde{g}(A_{h^*(Y_1,Z_1)}\tilde{J}Y_1, \tilde{J}Z_1). \]

Hence the desirable outcome is accomplished. □

Corollary 4.7. Let \(K = K_T \times \lambda K_\perp \) be a GCR-lightlike w. p. submanifold in \(\tilde{K}(c) \). Then

\[||h^*(\tilde{J}Y_1, Z_1)||^2 + ||h^*(Y_1, Z_1)||^2 = H_{ln}^*(Y_1, Y_1) + H_{ln}^*(\tilde{J}Y_1, \tilde{J}Y_1) + \frac{c}{2} + (Y_1 \ln \lambda)^2 + (\tilde{J}Y_1 \ln \lambda)^2 \]

for \(Z \in \Gamma(K_2) \) and \(Y \in \Gamma(D_0) \).

Proof. Particularly, for unit vectors \(Z_1 \in \Gamma(K_2) \) and \(Y_1 \in \Gamma(D_0) \), the result directly follows from Eq. (66). □

Acknowledgement. Sangeet Kumar wishes to thank Science and Engineering Research Board, GoI, New Delhi for the financial funding vide File No. ECR/2017/000786.

References

Sangeet Kumar

Department of Mathematics

Sri Guru Teg Bahadur Khalsa College

Sri Anandpur Sahib - 140118

Rupnagar, Punjab, India

Email address: sp7maths@gmail.com

Megha Pruthi

Department of Mathematics

Sri Guru Teg Bahadur Khalsa College

Sri Anandpur Sahib - 140118

Rupnagar, Punjab, India

Email address: meghapruthi4194@gmail.com