DOI QR코드

DOI QR Code

A LIOUVILLE THEOREM OF AN INTEGRAL EQUATION OF THE CHERN-SIMONS-HIGGS TYPE

  • Chen, Qinghua (Institute of Mathematics School of Mathematical Sciences Nanjing Normal University) ;
  • Li, Yayun (School of Applied Mathematics Nanjing University of Finance & Economics) ;
  • Ma, Mengfan (Institute of Mathematics School of Mathematical Sciences Nanjing Normal University)
  • 투고 : 2020.11.09
  • 심사 : 2021.07.29
  • 발행 : 2021.11.01

초록

In this paper, we are concerned with a Liouville-type result of the nonlinear integral equation of Chern-Simons-Higgs type $$u(x)=\vec{\;l\;}+C_{\ast}{{\displaystyle\smashmargin{2}{\int\nolimits_{\mathbb{R}^n}}}\;{\frac{(1-{\mid}u(y){\mid}^2){\mid}u(y){\mid}^2u(y)-\frac{1}{2}(1-{\mid}u(y){\mid}^2)^2u(y)}{{\mid}x-y{\mid}^{n-{\alpha}}}}dy.$$ Here u : ℝn → ℝk is a bounded, uniformly continuous function with k ⩾ 1 and 0 < α < n, $\vec{\;l\;}{\in}\mathbb{R}^k$ is a constant vector, and C* is a real constant. We prove that ${\mid}\vec{\;l\;}{\mid}{\in}\{0,\frac{\sqrt{3}}{3},1\}$ if u is the finite energy solution. Further, if u is also a differentiable solution, then we give a Liouville type theorem, that is either $u{\rightarrow}\vec{\;l\;}$ with ${\mid}\vec{\;l\;}{\mid}=\frac{\sqrt{3}}{3}$, when |x| → ∞, or $u{\equiv}\vec{\;l\;}$, where ${\mid}\vec{\;l\;}{\mid}{\in}\{0,1\}$.

키워드

과제정보

The authors are grateful to the referees for their valuable comments. Their suggestions have improved this article. This research was supported by National Natural Science Foundation of China (11871278).

참고문헌

  1. K. Bogdan, T. Kulczycki, and A. Nowak, Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes, Illinois J. Math. 46 (2002), no. 2, 541-556. http://projecteuclid.org/euclid.ijm/1258136210 https://doi.org/10.1215/ijm/1258136210
  2. H. Brezis, F. Merle, and T. Riviere, Quantization effects for -∆u = u(1 - |u|2) in R2, Arch. Rational Mech. Anal. 126 (1994), no. 1, 35-58. https://doi.org/10.1007/BF00375695
  3. J. Han, Quantization effects for Maxwell-Chern-Simons vortices, J. Math. Anal. Appl. 363 (2010), no. 1, 265-274. https://doi.org/10.1016/j.jmaa.2009.08.011
  4. J. Han and J. Jang, On the Chern-Simons-Higgs vortex equation without gauge fields, Nonlinear Anal. 69 (2008), no. 9, 2950-2963. https://doi.org/10.1016/j.na.2007.08.065
  5. J. Han and N. Kim, Nonself-dual Chern-Simons and Maxwell-Chern-Simons vortices on bounded domains, J. Funct. Anal. 221 (2005), no. 1, 167-204. https://doi.org/10.1016/j.jfa.2004.09.012
  6. M. Kurzke and D. Spirn, Gamma limit of the nonself-dual Chern-Simons-Higgs energy, J. Funct. Anal. 255 (2008), no. 3, 535-588. https://doi.org/10.1016/j.jfa.2008.04.020
  7. L. Lassoued and C. Lefter, On a variant of the Ginzburg-Landau energy, NoDEA Nonlinear Differential Equations Appl. 5 (1998), no. 1, 39-51. https://doi.org/10.1007/s000300050032
  8. L. Lei and X. Xu, A Liouville theorem for an integral equation of the Ginzburg-Landau type, arXiv. 2006.14951, 2020.
  9. Y. Li, Q. Chen, and Y. Lei, A Liouville theorem for the fractional Ginzburg-Landau equation, C. R. Math. Acad. Sci. Paris 358 (2020), no. 6, 727-731. https://doi.org/10.5802/crmath.91
  10. Y. Li and Y. Lei, Boundedness for solutions of equations of the Chern-Simons-Higgs type, Appl. Math. Lett. 88 (2019), 8-12. https://doi.org/10.1016/j.aml.2018.08.002
  11. L. Ma, Quantization effects for a variant of the Ginzburg-Landau type system, Electron. J. Differential Equations 2008 (2008), No. 135, 6 pp.
  12. L. Ma, Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg-Landau equation, C. R. Math. Acad. Sci. Paris 348 (2010), no. 17-18, 993-996. https://doi.org/10.1016/j.crma.2010.07.031
  13. L. Ma, Boundedness of solutions to Ginzburg-Landau fractional Laplacian equation, Internat. J. Math. 27 (2016), no. 5, 1650048, 6 pp. https://doi.org/10.1142/S0129167X16500488