DOI QR코드

DOI QR Code

Mobile Augmented Visualization Technology Using Vive Tracker

포즈 추적 센서를 활용한 모바일 증강 가시화 기술

  • Lee, Dong-Chun (ETRI(Electronics and Telecommunications Research Institute)) ;
  • Kim, Hang-Kee (ETRI(Electronics and Telecommunications Research Institute)) ;
  • Lee, Ki-Suk (ETRI(Electronics and Telecommunications Research Institute))
  • Received : 2021.07.08
  • Accepted : 2021.10.06
  • Published : 2021.10.20

Abstract

This paper introduces a mobile augmented visualization technology that augments a three-dimensional virtual human body on a mannequin model using two pose(position and rotation) tracking sensors. The conventional camera tracking technology used for augmented visualization has the disadvantage of failing to calculate the camera pose when the camera shakes or moves quickly because it uses the camera image, but using a pose tracking sensor can overcome this disadvantage. Also, even if the position of the mannequin is changed or rotated, augmented visualization is possible using the data of the pose tracking sensor attached to the mannequin, and above all there is no load for camera tracking.

본 논문은 2개의 포즈(위치 및 회전) 추적 센서를 사용하여 마네킹 모델위에 3차원의 가상 인체를 증강하는 모바일 증강 가시화 기술에 대해서 소개한다. 증강 가시화를 위해 사용된 종래의 카메라 트래킹 기술은 카메라 영상을 사용하기 때문에 카메라의 떨림이나 빠른 이동시 카메라의 포즈 계산에 실패하는 단점이 있으나, 바이브 트래커를 이용하게 되면 이러한 단점을 극복할 수 있다. 또한 증강하고자 하는 객체인 마네킹의 위치가 바뀌거나 회전을 하게 되더라도 마네킹에 부착된 포즈 추적 센서를 사용하여 증강 가시화가 가능한 장점이 있으며 무엇보다 카메라 트래킹을 위한 부하가 없다는 장점을 가진다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신산업진흥원의 지원을 받아 수행된 연구임 (D0315-21-1002, XR기반 중증외상처치훈련 시스템 구축)

References

  1. G. Klein and D. Murray, "Parallel tracking and mapping for small AR workspaces", in IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR), Nara, Japan, November 2007, pp. 225-23
  2. R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, "ORB-SLAM: a versatile and accurate monocular SLAM system", IEEE Trans. Robot., 2015.
  3. M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, "Robust visual inertial odometry using a direct EKF-based approach", International Conference on Intelligent Robots and Systems(IROS), 2015.
  4. Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul Furgale. "Keyframe-based visual-inertial odometry using nonlinear optimization", The International Journal of Robotics Research, 2015.
  5. C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, "On-manifold preintegration for real-time visual-inertial odometry", IEEE Trans. Robot., vol. 33, no. 1, pp. 1-21, 2017. https://doi.org/10.1109/TRO.2016.2597321
  6. D. Schubert, N. Demmel, L. von Stumberg, V. Usenko and D. Cremers, "Rolling-Shutter Modelling for Visual-Inertial Odometry", International Conference on Intelligent Robots and Systems(IROS), 2019
  7. Jakob Engel, Vladlen Koltun, and Daniel Cremers. "Direct sparse odometry", IEEE transactions on pattern analysis and machine intelligence, 2017
  8. Raul Mur-Artal and Juan D Tardos. "ORB-SLAM2: An open-source slam system for monocular, stereo, and rgb-d cameras", IEEE Transactions on Robotics, 2017.
  9. R.Wang, M. Schworer, and D. Cremers. "Stereo DSO: Largescale direct sparse visual odometry with stereo cameras", In International Conference on Computer Vision (ICCV), 2017.
  10. ARCore SDK site, https://developers.google.com/ar
  11. ARKit SDK site, https://developer.apple.com/kr/augmented-reality/arkit/
  12. Shing Yan Loo, Ali Jahani Amiri, Syamsiah Mashohor, Sai Hong Tang, and Hong Zhang. "CNN-SVO: Improving the mapping in semi-direct visual odometry using single image depth prediction", International Conference on Robotics and Automation (ICRA), 2019
  13. Clement Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J. Brostow. "Digging into self-supervised monocular depth estimation", The IEEE International Conference on Computer Vision (ICCV), 2019
  14. Vuforia SDK site, https://developer.vuforia.com/
  15. Vive Pro hardware spec site, https://www.vive.com/kr/product/vive-pro-full-kit/
  16. D. Chekhlov, M. Pupilli, W. Mayol-Cuevas, and A. Calway. "Realtime and robust monocular SLAM using predictive multi-resolution descriptors", In 2nd International Symposium on Visual Computing, 2006
  17. E. Eade and T. Drummond. "Scalable monocular slam", In Proc. IEEE Intl. Conference on Computer Vision and Pattern Recognition (CVPR), 2006
  18. Jakob Engel, Jorg Stuckler, and Daniel Cremers. "Large-scale direct SLAM with stereo cameras", In Intelligent Robots and Systems (IROS)