DOI QR코드

DOI QR Code

Reference Information Batch Application Model for Improving the Efficiency of MES

MES 효율 향상을 위한 참조정보 일괄 적용 모델

  • Park, Sang-Hyock (Dept. of Computer Engineering, Kongju National University) ;
  • Park, Koo-Rack (Dept. of Computer Science & Engineering, Kongju National University) ;
  • Kim, Dong-Hyun (Dept. of IT Artificial Intelligence, Korea Nazarene University) ;
  • Chung, Koung-Rock (Dept. of Computer Engineering, Kongju National University)
  • 박상혁 (공주대학교 컴퓨터공학과) ;
  • 박구락 (공주대학교 컴퓨터공학부) ;
  • 김동현 (나사렛학교 IT인공지능학부) ;
  • 정경록 (공주대학교 컴퓨터공학과)
  • Received : 2021.09.06
  • Accepted : 2021.10.20
  • Published : 2021.10.28

Abstract

In the manufacturing industry, there is a transition to multi-item production for reinforcement of competitiveness. Therefore, the hybrid manufacturing technology is increasing. Especially, many efforts in production quality improvement are made through the adoption of the manufacturing execution system and ERP, so it is necessary to operate MES for prompt and effective management. MES should improve ineffective parts in production activities while managing all stages related to production of products. If there is change in the process, the changed items should be reflected to the system. However, most manufacturing execution systems are operated passively and repetitively by system administrators. This study presents a model that system administrators can comprehensively apply reference information about production related requirements on specific line's equipment to the same equipment of other lines. The flexible response for application to production lines is possible thanks to the division of blanket application and selective application of reference information through proposed model.

제조업 분야에서는 경쟁력 강화를 위하여 다품종 생산으로의 전환이 이루어지고 있으며, 하이브리드 제조기술이 증가하고 있다. 특히 제조실행시스템과 ERP 등의 도입을 통하여 생산 품질 향상에 많은 노력을 기울이고 있기에, 신속하고 효과적인 관리를 위한 MES 운영이 필요하다. MES는 제품 생산과 관련된 모든 단계를 관리하면서, 생산 활동에 비효율적인 부분은 개선하고, 공정 변경의 경우에 시스템에 변경 사항을 반영해야 한다. 그러나 대부분의 MES는 시스템 관리자를 통하여 수동적이고, 반복적으로 비효율적인 작업을 계속 하고 있는 상황이다. 본 논문에서는 생산과 관련된 요구사항을 시스템 관리자가 특정 라인의 장비에 대한 참조 정보를, 다른 라인의 동일한 장비에도 일괄 적용할 수 있는 모델을 제안한다. 제안 모델을 통하여 참조 정보의 일괄 적용과 선택 적용의 구분으로 생산 라인에 대한 유연한 대처가 가능할 것으로 기대된다.

Keywords

References

  1. J. S. Han. (2020). MES system based on real-time process capability management. Journal of the Korea Society of Computer and Information, 25(22), 115-122. DOI : 10.9708/jksci.2020.25.11.115
  2. A. Caggiano, T. Segreto & R. Teti. (2016). Cloud manufacturing framework for smart monitoring of machining. Procedia Cirp, 55, 248-253. DOI : 10.1016/j.procir.2016.08.049
  3. R. Gao, L. Wang, R. Teti, D. Dornfeld, S. Kumara, M. Mori & M. Helu. (2015). Cloud-enabled prognosis for manufacturing. CIRP annals, 64(2), 749-772. DOI : 10.1016/j.cirp.2015.05.011
  4. L. Changhong & R. Y. Zhong. (2017). Internet of Things for Manufacturing in the Context of Industry 4.0. Transdisciplinary Engineering: A Paradigm Shift, 1013-1022. DOI : 10.3233/978-1-61499-779-5-1013
  5. X. Qiu, H. Luo, G. Xu, R. Zhong & G. Q. Huang. (2015). Physical assets and service sharing for IoT-enabled Supply Hub in Industrial Park (SHIP). International Journal of Production Economics, 159, 4-15. DOI : 10.1016/j.ijpe.2014.09.001
  6. T. S. Qu et al. (2014). Internet- of-Things-Enabled Smart Production et al. Logistics Execution System Based on Cloud Manufacturing. ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference, American Society of Mechanical Engineers DOI : 10.1115/MSEC2014-4194
  7. S. Iarovyi, W. M. Mohammed, A. Lobov, B. R. Ferrer & J. L. M. Lastra. (2016). Cyber-physical systems for open-knowledge-driven manufacturing execution systems. Proceedings of the IEEE, 104(5), 1142-1154. DOI : 10.1109/JPROC.2015.2509498.
  8. M. Naedele, H. M. Chen, R. Kazman, Y. Cai, L. Xiao & C. V. Silva. (2015). Manufacturing execution systems: A vision for managing software development. Journal of systems and Software, 101, 59-68. DOI : 10.1016/j.jss.2014.11.015.
  9. B. Saenz de Ugarte, A. Artiba & R. Pellerin. (2009). Manufacturing execution system-a literature review. Production planning and control, 20(6), 525-539. DOI : 10.1080/09537280902938613.
  10. K. Damian & K. Pawel. (2016). Bottom-up approach for developing a tailor-made manufacturing execution system. 2016 11th France-Japan & 9th Europe-Asia Congress on Mechatronics(MECATRONICS)/ 17th International Conference on Research and Education in Mechatronics (REM), IEEE, 236-231. DOI : 10.1109/MECATRONICS.2016.7547148
  11. B. W. Jeon, J. Um, S. C. Yoon, S. H & S. Suk-Hwan. (2017). An architecture design for smart manufacturing execution system. Computer-aided design and applications, 14(4), 472-485. DOI : 10.1080/16864360.2016.1257189
  12. H. Meyer, F. Franz & T. Klaus. (2009). Manufacturing Execution Systems (MES): Optimal Design Planning, and Deployment. McGraw Hill Professional.
  13. L. Gaxiola, M. D. J. Ramirez, G. Jimenez & A. Molina. (2003). Proposal of holonic manufacturing execution systems based on web service technologies for Mexican SMEs. In International Conference on Industrial Applications of Holonic and Multi-Agent Systems, Springer, Berlin, Heidelberg, 156-166.
  14. A. Kozminski. (2012). Windows Presentation Foundation (WPF) technology meets the challenges of operator interface design in automatic test systems. In 2012 IEEE AUTOTESTCON Proceedings, IEEE, 80-83. DOI : 10.1109/AUTEST.2012.6334585.
  15. C. Petzold. (2007). 3d programming for windows®: three-dimensional graphics programming for the windows presentation foundation. Microsoft Press. USA.