DOI QR코드

DOI QR Code

Effect of Sm2O3 Doping on Microstructure and Electrical Properties of ZPCCA-Based Varistors

  • Nahm, Choon-Woo (Department of Electrical Engineering, Dongeui University)
  • 투고 : 2021.08.29
  • 심사 : 2021.10.05
  • 발행 : 2021.10.27

초록

The effect of Sm2O3 doping on the microstructure and electrical properties of the ZPCCA-based varistors is comprehensively investigated. The increase of doping content of Sm2O3 results in better densification (from 5.70 to 5.82 g/cm3) and smaller mean grain size (from 7.8 to 4.1 ㎛). The breakdown electric field increases significantly from 2568 to 6800 V/cm as the doping content of Sm2O3 increases. The doping of Sm2O3 remarkably improves the nonlinear properties (increasing from 23.9 to 91 in the nonlinear coefficient and decreasing from 35.2 to 0.2 µA/cm2 in the leakage current density). Meanwhile, the doping of Sm2O3 reduces the donor concentration (the range of 2.73 × 1018 to 1.18 × 1018 cm-3) of bulk grain and increases the barrier height (the range of 1.10 to 1.49 eV) at the grain boundary. The density of the interface states decreases in the range of of 5.31 × 1012 to 4.08 × 1012 cm-2 with the increase of doping content of Sm2O3. The dielectric constant decreases from 1594.8 to 507.5 with the increase of doping content of Sm2O3.

키워드

참고문헌

  1. M. Matsuoka, Jpn. J. Appl. Phys., 10, 736 (1971). https://doi.org/10.1143/JJAP.10.736
  2. K. Mukae, K. Tsuda and I. Nagasawa, Jpn. J. Appl. Phys., 16, 1361 (1977). https://doi.org/10.1143/JJAP.16.1361
  3. K. Mukae, Ceram. Bull., 66, 1329 (1987).
  4. K. Mukae, K. Tsuda and S. Shiga, IEEE Tran. Power Delivery, 3, 591 (1988). https://doi.org/10.1109/61.4296
  5. H. K. Varma, K. P. Kumar, K. G. K. Warrier and A. D. Damodaran, J. Mater. Sci. Lett., 8, 974 (1989). https://doi.org/10.1007/BF01729966
  6. A. B. Alles and V. L. Burdick, J. Appl. Phys., 70, 6883 (1991). https://doi.org/10.1063/1.349812
  7. A. B. Alles, R. Puskas, G. Callahan and V. L. Burdick, J. Am. Ceram. Soc., 76, 2098 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb08339.x
  8. Y.-S. Lee, K.-S. Liao and T.-Y. Tseng, J. Am. Ceram. Soc., 79, 2379 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08986.x
  9. C.-W. Nahm, Mater. Lett., 47, 182 (2001). https://doi.org/10.1016/S0167-577X(00)00262-7
  10. C.-W. Nahm, Mater. Lett., 57, 1371 (2003).
  11. C.-W. Nahm, Ceram. Int., 30, 1009 (2004). https://doi.org/10.1016/j.ceramint.2003.10.020
  12. C.-W. Nahm, Mater. Lett., 58, 2097 (2005). https://doi.org/10.1016/j.matlet.2005.01.080
  13. C.-W. Nahm, J. Mater. Sci., 43, 2857 (2008). https://doi.org/10.1007/s10853-007-2263-9
  14. C.-W. Nahm, J. Mater. Sci.: Mater. Electron., 20, 718 (2009). https://doi.org/10.1007/s10854-008-9793-z
  15. C.-W. Nahm, J. Rare Earth, 31, 276 (2013). https://doi.org/10.1016/S1002-0721(12)60272-5
  16. J. C. Wurst and J. A. Nelson, J. Am. Ceram. Soc., 55, 109 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb11224.x
  17. M. Mukae, K. Tsuda and I. Nagasawa, J. Appl. Phys., 50, 4475 (1979). https://doi.org/10.1063/1.326411
  18. L. Hozer, Semiconductor Ceramics: Grain Boundary Effects, p.22, Ellis Horwood, London (1999).
  19. C.-W. Nahm, J. Rare Earth, 33, 403 (2015). https://doi.org/10.1016/s1002-0721(14)60433-6
  20. C.-W. Nahm, C.-H. Park, J. Mater. Sci., 35, 3037 (2000). https://doi.org/10.1023/a:1004749214640
  21. G. D. Mahan, J. Appl. Phys., 54, 3825 (1983). https://doi.org/10.1063/1.332607