DOI QR코드

DOI QR Code

Implementation of an Arduino-Compatible Board using ATmega128

ATmega128 기반 아두이노 호환 보드 구현

  • Received : 2021.07.19
  • Accepted : 2021.07.30
  • Published : 2021.10.31

Abstract

Arduino is one of the commonly used microcontroller platforms, and widely used not only in education but also in industrial fields because it enables rapid development and has excellent expandability. However, since there are only a few microcontrollers officially used by Arduino, attempts have been made to use various microcontrollers in the Arduino environment. As part of the Arduino expansion, in this paper, we implemented 128duino, ATmega128-based Arduino-compatible board, and its operation was verified. ATmega128 is one of the microcontrollers commonly used for educational purpose, so it was chosen for Arduino expansion. Since 128duino has advantages in terms of hardware configuration and price by implementing serial and ISP style upload with one USB connection, it is expected to be used in various environments including Internet of Things as well as in education.

아두이노는 흔히 사용되는 마이크로컨트롤러를 위한 플랫폼의 하나로 빠른 개발을 가능하게 하면서도 뛰어난 확장성을 가지고 있어 교육 현장은 물론 산업 현장에서도 널리 사용되고 있다. 하지만 아두이노에서 공식적으로 사용하는 마이크로컨트롤러는 몇 가지에 지나지 않으므로 다양한 마이크로컨트롤러를 아두이노 환경에서 사용하고자 하는 시도가 이루어져 왔다. 이러한 아두이노 플랫폼 확장의 일환으로 이 논문에서는 ATmega128 기반의 아두이노 호환 보드인 128duino를 구현하고 그 동작을 확인한다. ATmega128은 교육용으로 흔히 사용되는 마이크로컨트롤러 중 하나이므로 아두이노 확장을 위해 선택하였다. 128duino는 시리얼 및 ISP(In System Programming) 방식 업로드를 하나의 USB 연결로 가능하도록 구현하여 하드웨어 구성 및 가격 측면에서 장점을 가지므로 교육용은 물론, 사물인터넷을 포함한 다양한 환경에서 사용할 수 있을 것으로 기대한다.

Keywords

References

  1. Arduino [Internet]. Available: https://www.arduino.cc/.
  2. M. Novak, J. Kalova, and J. Pech, "Use of the Arduino Platform in Teaching Programming," in Proceedings of 2018 IV International Conference on Information Technologies in Engineering Education, Moscow, Russia, pp. 1-4, 2018.
  3. G. Heo, "Implementation of an Arduino Compatible Modular Kit for Educational Purpose," Journal of the Korea Institute of Information and Communication Engineering, vol. 23, no. 5, pp. 547-554, May. 2019. https://doi.org/10.6109/JKIICE.2019.23.5.547
  4. K. Hur, "Curriculum for Basic Digital Logic Circuit Practices through Arduino Device Programming," Journal of Practical Engineering Education, vol. 9, no. 1, pp. 41-48, June. 2017. https://doi.org/10.14702/JPEE.2017.041
  5. T. C. Huang, S. H. Chang, V. Y. Shu, P. Hansen, and S. L. Lee, "Developing a Curriculum of Maker Education in Taiwan Higher Education," in Proceedings of International Symposium on Emerging Technologies for Education, Cape Town, South Africa, pp. 433-437, 2017.
  6. G. Heo and H. Choi, "128duino : An Extension of the Arduino Platform for ATmega128," Journal of the Korea Institute of Information and Communication Engineering, vol. 24, no. 10, pp. 1369-1375, Oct. 2020. https://doi.org/10.6109/JKIICE.2020.24.10.1369
  7. G. Heo and D. Ryu, "Unified Programmer for AVR-Based Arduino-Compatible Boards," Journal of the Korea Institute of Information and Communication Engineering, vol. 25, no. 1, pp. 96-101, Jan. 2021. https://doi.org/10.6109/JKIICE.2021.25.1.96
  8. MegaCore [Internet]. Available: https://github.com/MCUdude/MegaCore.