DOI QR코드

DOI QR Code

Generation of Hydrogen from Hydrolysis Reaction of NaBH4 Using Fresh Water

담수 사용 NaBH4 가수 분해반응에 의한 수소발생

  • Oh, Sohyeong (Department of Chemical Engineering, Sunchon National University) ;
  • Yoo, Donggeun (Department of Chemical Engineering, Sunchon National University) ;
  • Kim, Taeho (Department of Chemical Engineering, Sunchon National University) ;
  • Kim, Ikgyun (Department of Chemical Engineering, Sunchon National University) ;
  • Park, Kwon-Pil (Department of Chemical Engineering, Sunchon National University)
  • 오소형 (순천대학교 화학공학과) ;
  • 유동근 (순천대학교 화학공학과) ;
  • 김태호 (순천대학교 화학공학과) ;
  • 김익균 (순천대학교 화학공학과) ;
  • 박권필 (순천대학교 화학공학과)
  • Received : 2021.07.13
  • Accepted : 2021.08.30
  • Published : 2021.11.01

Abstract

Sodium borohydride, NaBH4, has many advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFC). When PEMFC is used outdoors as a transport type, it is economical to hydrolyze NaBH4 using fresh water instead of distilled water. Therefore, in this study, hydrogen was generated using fresh water instead of distilled water during the NaBH4 hydrolysis process. The properties of NaBH4 hydrolysis were studied using an activated carbon-supported Co-P-B/C catalyst. Fresh water did not generate tetrahydrate during the NaBH4 hydrolysis process, and distilled water produced tetrahydrate by-products, which consumed a lot of water during the hydrolysis process, indicating that at the end of the reaction at a high concentration of 25% or more of NaBH4, dry by-products and unreacted NaBH4 remained. As a result, when fresh water was used, the hydrogen yield and hydrogen generation rate were higher than that of distilled water at a high concentration of 25% or more of NaBH4, indicating that it is suitable for use in transport-type fuel cells such as unmanned aerial vehicles.

이동용 고분자전해질 연료전지(PEMFC)의 수소발생용으로써 NaBH4는 많은 장점을 갖고 있다. 야외에서 PEMFC가 이송형으로 사용될 때 증류수대신 담수를 이용해 NaBH4 가수분해하면 경제적이다. 그래서 본 연구에서는 NaBH4 가수분해 과정에 증류수대신 담수를 이용해 수소를 발생시켰다. 활성탄 담지 Co-P-B/C 촉매를 사용해 NaBH4 가수분해 특성에 대해 연구하였다. 담수는 NaBH4 가수분해과정에서 4수화물을 발생시키지 않았고, 증류수는 4수화물 부산물이 생성되어 가수분해과정에서 많은 물이 소모되어서 NaBH4 25% 이상 고농도에서 반응 종료시점에는 건조한 부산물과 미반응 NaBH4가 남았음을 확인하였다. 이 결과 담수를 사용했을 때 NaBH4 25% 이상 고농도에서 증류수보다 수소 수율과 수소발생속도가 더 높아 무인항공기등 이송형 연료전지에도 적용하기에 적합함을 보였다.

Keywords

Acknowledgement

이 논문은 순천대학교 교연비 사업에 의하여 연구되었음.

References

  1. Commercial Drones: Highways in the Sky, Unmanned Aerial Systems (UAS), Market Shares, Strategies, and Forecasts, Worldwide, 2015 to 2021, http//wintergreenresearch.com/reports/CommercialUAS.html
  2. Bradley, T. H., Moffitt, B. A., Mavris, D. N. and Parekh, D. E., "Development and Experimental Characterization of a Fuel Cell Powered Aircraft," J. Power Sources, 171(2), 793-801(2007). https://doi.org/10.1016/j.jpowsour.2007.06.215
  3. Liu, B. H. and Li, Z. P., "A Review: Hydrogen Generation from Borohydride Hydrolysis Reaction," J. Power Sources, 187(2), 527-534(2009). https://doi.org/10.1016/j.jpowsour.2008.11.032
  4. Fernandes, R., Patel, N., Miotello, A., Jaiswal, R. and Korthari, D. C., "Stability, Durability, and Reusability Studies on Transition Metal-doped Co-B Alloy Catalysts for Hydrogen Production," Int. J. Hydrogen Energy, 36(21), 13379-13391(2011). https://doi.org/10.1016/j.ijhydene.2011.08.021
  5. Moon, G. Y., Lee, S. S., Yang, G. R. and Song, K. H., "Effects of Organic Acid Catalysts on the Hydrogen Generation from NaBH4", Korean J. Chem. Eng., 27(2), 474-479(2010). https://doi.org/10.2478/s11814-010-0072-3
  6. Simagina, V. I., Netskina, O. V., Komova, O. V., Odegova, G. V., Kochubei, D. I. and Ishchenko, A. V., "Activity of Rh/TiO2 Catalysts in NaBH4 Hydrolysis: The Effect of the Interaction Between RhCl3 and the Anatase Surface During Heat Treatment," Kinetics and Catalysis, 49(4), 568-573(2008). https://doi.org/10.1134/S0023158408040174
  7. Simagina, V. I., Storozhenko, P. A., Netskina, O. V., Komova, O. V., Odegova, G. V., Samoilenko, T. Y. and Gentsler, A. G., "Effect of the Nature of the Active Component and Support on the Activity of Catalysts for the Hydrolysis of Sodium Borohydride," Kinetics and Catalysis, 48(1), 168-175(2007). https://doi.org/10.1134/S0023158407010223
  8. Demirci, U. B. and Garin, F., "Promoted Sulphated-zirconia Catalysed Hydrolysis of Sodium Tetrahydroborate," Catal. Commun., 9(6), 1167-1172(2008). https://doi.org/10.1016/j.catcom.2007.10.028
  9. Chen, Y. and Kim, H., "Ni/Ag/silica Nanocomposite Catalysts for Hydrogen Generation from Hydrolysis of NaBH4 Solution," Mater. Lett., 62, 1451-1454(2008). https://doi.org/10.1016/j.matlet.2007.08.084
  10. Hwang, B. C., Jo, A. R., Sin, S. J., Choi, D. K., Nam, S. W. and Park, K. P., "NaBH4 Hydrolysis Reaction Using Co-P-B Catalyst Supported on FeCrAlloy," Korean Chem. Eng. Res., 51(1), 35-41 (2013). https://doi.org/10.9713/kcer.2013.51.1.35
  11. Lee, H. R., Na, I. C. and Park, K. P., "Characteristics of Hydrolysis Reaction Using Unsupported Catalyst at High Concentration of NaBH4 Solutions," Korean Chem. Eng. Res., 54(5), 587-592(2016). https://doi.org/10.9713/kcer.2016.54.5.587
  12. Oh, S. J., Jung, H. S., Jeong, J. J., Na, I. C., Ahn, H. G. and Park, K. P., "Hydrolysis Reaction of NaBH4 Using Unsupported Co-B, Co-P-B Catalyst," Korean Chem. Eng. Res., 53(1), 11-15(2015). https://doi.org/10.9713/kcer.2015.53.1.11
  13. Lee, D, W., Oh, S. H., Kim, J. S., Kim, D. H. and Park, K. P., "Generation of Hydrogen from Hydrolysis Reaction of NaBH4 Using Sea Water," Korean Chem. Eng. Res., 57(6), 758-762(2019). https://doi.org/10.9713/kcer.2019.57.6.758
  14. Kim, R. K., Jung, S. U., Park, E. H., Kim, S. H., "A Study on Additives to Control the Formation of Sodium Metaborate : the By-product of NaBH4 Hydrolysis for Hydrogen Generation," Theories and Applications of Chem. Eng., 10(2), 1875-1878(2004).