DOI QR코드

DOI QR Code

A Review on Lithium Recovery by Membrane Process

멤브레인 공정에 의한 리튬 회수에 대한 총설

  • Kim, Esther (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • 김에스더 (연세대학교 언더우드국제대학 융합과학공학부 에너지환경과학공학) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드국제대학 융합과학공학부 에너지환경과학공학)
  • Received : 2021.10.20
  • Accepted : 2021.10.27
  • Published : 2021.10.31

Abstract

Lithium ion battery (LIB) demands increase every year globally to reduce the burden on fossil fuels. LIBs are used in electric vehicles, stationary storage systems and various other applications. Lithium is available in seawater, salt lakes, and brines and its extraction using environmentally friendly and inexpensive methods will greatly relieve the pressure in lithium mining. Membrane separation processes, mainly nanofiltration (NF), is an effective way for the separation of lithium metal from solutions. Electrodialysis and electrolysis are other separation processes used for lithium separation. The process of reverse osmosis (RO) is already a well-established method for the desalination of seawater; therefore, modifying RO membranes to target lithium metals is an excellent alternative method in which the only bottleneck is the interfering presence of other metal elements in the solution. Selectively removing lithium by finding or developing suitable NF membranes can be challenging, but it is nonetheless an exciting area of research. This review discusses in detail about lithium recovery via nanofiltration, electrodialysis, electrolysis and other processes.

리튬 이온 배터리(LIB) 수요는 화석 연료에 대한 부담을 줄이기 위해 전 세계적으로 매년 증가하고 있다. LIB는 전기 자동차, 고정식 저장 시스템 및 기타 다양한 응용 분야에 사용된다. 리튬은 해수, 염수, 염호에서 구할 수 있으며 환경 친화적이고 저렴한 방법으로 추출하면 리튬 채굴의 부담을 크게 줄일 수 있다. 주로 나노여과(NF)와 같은 막 분리 공정은 용액에서 리튬 금속을 분리하는 효과적인 방법이다. 전기투석 및 전기 분해는 리튬 분리에 사용되는 다른 분리 공정이다. 역삼투압(RO) 공정은 이미 해수 담수화를 위한 잘 정립된 방법이다. 따라서, 리튬 금속을 목적으로 사용되는 개질된 RO 분리막은 용액속에 존재하는 다른 금속 원소의 간섭에 의한 문제를 해결할 수 있는 좋은 대안 방법이다. 적합한 NF 막을 찾거나 개발하여 리튬을 선택적으로 제거하는 것은 도전적일 수 있지만 흥미로운 연구 영역이다. 이 총설에서는 나노여과, 전기투석, 전기분해 및 기타 공정을 이용한 리튬 회수에 대해 자세히 설명한다.

Keywords

References

  1. C. B. Tabelin, J. Dallas, S. Casanova, T. Pelech, G. Bournival, S. Saydam, and I. Canbulat, "Towards a low-carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives", Minerals Eng, 163, 1064743 (2021).
  2. S. Zavahir, T. Elmakki, M. Gulied, Z. Ahmad, L. Al-Sulaiti, H. K. Shon, Y. Chen, H. Park, B. Batchelor, and D. S. Han, "A review on lithium recovery using electrochemical capturing systems", Desalination, 500, 114883 (2021). https://doi.org/10.1016/j.desal.2020.114883
  3. K.-H. Lee, B.-M. Kil, C.-H Ryu, and G.-J. Hwang, "Removal of Alkali Metal Ion and Chlorine Ion Using the Ion Exchange Resin", Membr. J., 30, 276 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.4.276
  4. B. Swain, "Recovery and recycling of lithium: A review", Sep. Purif. Technol., 172, 388 (2017). https://doi.org/10.1016/j.seppur.2016.08.031
  5. X. Li, Y. Mo, W. Qing, S. Shao, C. Y. Tang, and J. Li, "Membrane-based technologies for lithium recovery from water lithium resources: A review", J. Membr., Sci. 591, 117317 (2019). https://doi.org/10.1016/j.memsci.2019.117317
  6. P. Xu, J. Hong, X. Qian, Z. Xu, H. Xia, X. Tao, Z. Xu, and Q. Q. Ni, "Materials for lithium recovery from salt lake brine", J Mater Sci., 56, 16 (2021) 16-63. https://doi.org/10.1007/s10853-020-05019-1
  7. Z. Ren, X. Wei, R. Li, W. Wang, Y. Wang, and Z. Zhou, "Highly selective extraction of lithium ions from salt lake brines with sodium tetraphenylborate as co-extractant", Sep. Purif. Technol., 269, 118756 (2021). https://doi.org/10.1016/j.seppur.2021.118756
  8. P. Meshram, B. D. Pandey, and T. R. Mankhand, "Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review", Hydrometallurgy, 150, 192 (2014). https://doi.org/10.1016/j.hydromet.2014.10.012
  9. Y. Zhao, T. Tong, X. Wang, S. Lin, E. M. Reid, and Y. Chen, "Differentiating Solutes with Precise Nanofiltration for Next Generation Environmental Separations: A Review", Environ. Sci. Technol., 55, 1359 (2021). https://doi.org/10.1021/acs.est.0c04593
  10. S. Y. Nam and D. J. Kim, "Development and Application Trend of Bipolar Membrane for Electrodialysis", Membr. J., 23, 319 (2013).
  11. S. H. Park, J. H. Kim, S. J. Moon, J. T. Jung, H. H. Wang, A. Ali, C. A. Quist-Jensen, F. Macedonio, E. Drioli, and Y. M. Lee, "Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration", J. Membr. Sci., 598, 117683 (2020). https://doi.org/10.1016/j.memsci.2019.117683
  12. L. Wang, D. Rehman, P. F. Sun, A. Deshmukh, L. Zhang, Q. Han, Z. Yang, Z. Wang, H. D. Park, J. H. Lienhard, and C. Y. Tang, "Novel Positively Charged Metal-Coordinated Nanofiltration Membrane for Lithium Recovery", ACS Appl. Mater. Interfaces, 13, 16906 (2021). https://doi.org/10.1021/acsami.1c02252
  13. P. Xu, J. Hong, Z. Xu, H. Xia, and Q. Q. Ni, "Positively charged nanofiltration membrane based on (MWCNTs-COOK)-engineered substrate for fast and efficient lithium extraction", Sep. Purif. Technol., 270, 118796 (2021). https://doi.org/10.1016/j.seppur.2021.118796
  14. M. Bazrgar Bajestani, A. Moheb, and M. Dinari, "Preparation of lithium ion-selective cation exchange membrane for lithium recovery from sodium contaminated lithium bromide solution by electrodialysis process", Desalination, 486, 114476 (2020). https://doi.org/10.1016/j.desal.2020.114476
  15. M. Grageda, A. Gonzalez, A. Quispe, and S. Ushak, "Analysis of a process for producing battery grade lithium hydroxide by membrane electro-dialysis", Membranes, 10, 1 (2020).
  16. T. Ounissi, L. Dammak, C. Larchet, J. F. Fauvarque, and E. Selmane Bel Hadj Hmida, "Novel lithium selective composite membranes: synthesis, characterization and validation tests in dialysis", J Mater Sci., 55, 16111 (2020). https://doi.org/10.1007/s10853-020-05147-8
  17. P. P. Sharma, V. Yadav, A. Rajput, H. Gupta, H. Saravaia, and V. Kulshrestha, "Sulfonated poly (ether ether ketone) composite cation exchange membrane for selective recovery of lithium by electrodialysis", Desalination, 496, 114755 (2020). https://doi.org/10.1016/j.desal.2020.114755
  18. C. H. Diaz Nieto, K. Rabaey, and V. Flexer, "Membrane electrolysis for the removal of Na+ from brines for the subsequent recovery of lithium salts", Sep. Purif. Technol., 252, 117410 (2020). https://doi.org/10.1016/j.seppur.2020.117410
  19. W.R. Torres, C.H. Diaz Nieto, A. Prevoteau, K. Rabaey, and V. Flexer, "Lithium carbonate recovery from brines using membrane electrolysis", J. Membr. Sci., 615, 118416 (2020). https://doi.org/10.1016/j.memsci.2020.118416
  20. J. Cui, Z. Zhou, A. Xie, S. Liu, Q. Wang, Y. Wu, Y. Yan, and C. Li, "Facile synthesis of degradable CA/CS imprinted membrane by hydrolysis polymerization for effective separation and recovery of Li+", Carbohydr. Polym., 205, 492 (2019). https://doi.org/10.1016/j.carbpol.2018.10.094
  21. M. Mohammad, M. Lisiecki, K. Liang, A. Razmjou, and V. Chen, "Metal-Phenolic network and metalorganic framework composite membrane for lithium ion extraction", Appl. Mater. Today, 21, 100884 (2020). https://doi.org/10.1016/j.apmt.2020.100884
  22. A. Razmjou, M. Asadnia, E. Hosseini, A. Habibnejad Korayem, and V. Chen, "Design principles of ion selective nanostructured membranes for the extraction of lithium ions", Nat. Commun., 10, 6793 (2019).
  23. S. Roobavannan, S. Vigneswaran, and G. Naidu, "Enhancing the performance of membrane distillation and ion-exchange manganese oxide for recovery of water and lithium from seawater", Chem. Eng. J., 396, 125386 (2020). https://doi.org/10.1016/j.cej.2020.125386
  24. C. Yu, J. Lu, J. Dai, Z. Dong, X. Lin, W. Xing, Y. Wu, and Z. Ma, "Bio-inspired fabrication of Ester-functionalized imprinted composite membrane for rapid and high-efficient recovery of lithium ion from seawater", J. Colloid Interface Sci., 572, 340 (2020). https://doi.org/10.1016/j.jcis.2020.03.091