DOI QR코드

DOI QR Code

Application of Membranes for Biological Waste Gas Treatment Processes

생물학적 폐가스 처리공정 내 멤브레인 활용

  • Lee, Sang-hun (Department of Environmental Science, Keimyung University)
  • Received : 2021.10.17
  • Accepted : 2021.10.29
  • Published : 2021.10.31

Abstract

The use of membranes for MBRWG (Membrane Bioreactor for Waste Gas) treatment can provide highly selective separation of a waste gas stream followed by effective biological removal. MBRWG have several potential advantages, among which the most distinctive one is separation of gas and liquid phases at each side of membrane potentially allowing the optimal biomass control toward effective biodegradation of target gases as well as biofilm activation. This advantage becomes especially favorable for removal of hydrophobic toxic gases, such as xylene, by MBRWG systems, because the mass transfer, the toxicity, and thereby the biodegradation of hydrophobic gas treatment requires sensitive handling of liquid stream and water control near biofilm. Among various membranes for MBRWG treatment, PDMS-hollow fiber membranes provide the high gas mass transfer. Despite lower specific surface areas, capillary type membranes are also applied current MBRWG studies. In addition to the main application of membranes as biofilm supporter in MBRWG systems, there can be another application of membranes in a posterior process for removal of residual gases or dusts emitted from conventional biological waste gas treatment processes.

멤브레인 기반의 MBRWG (Membrane Bioreactor for Waste Gas) 처리기술은 폐가스 흐름에 대한 높은 선택성을 바탕으로 효과적인 생물학적 제거를 수행할 수 있다. MBRWG에는 몇 가지 잠재적 이점이 있는데, 이 중 가장 두드러진 점은 기상과 액상이 멤브레인 양쪽으로 명확히 분리되어 액상 내 생물막의 최적제어가 용이하고 이를 통해 효과적인 생분해와 생물막의 활성화를 도모할 수 있다는 것이다. MBRWG 처리기술은 특히 xylene 같은 소수성 독성 기체 성분 제거에 유리한데 이는 소수성 기체의 물질전달속도, 독성 및 제거율이 생물막 인근의 액상흐름 및 수분제어에 민감하게 변화하기 때문이다. MBRWG 처리에 쓰이는 다양한 멤브레인 중에서 PDMS-중공사막(hollow fiber)이 가장 높은 기체 물질 전달을 제공한다고 보고되었다. Capillary 형태도 중공사막형태에 비해 비표면적은 낮지만 비교적 활발한 연구가 진행되고 있다. 소수성 기체성분 제거 외에도 기존 생물학적 폐가스 처리 장치에서 배출된 잔류 기체 혼합물이나 먼지를 제거하기 위한 후단 공정에서 멤브레인 활용을 고려할 수 있다.

Keywords

Acknowledgement

본 연구는 한국연구재단의 지역우수과학자지원사업(과제번호 NRF-2020R1I1A3073457)의 지원을 받아 수행되었다.

References

  1. A. Rolewicz-Kalinska, K. Lelicinska-Serafin, and P. Manczarski, "Volatile organic compounds, ammonia and hydrogen sulphide removal using a two-stage membrane biofiltration process", Chem. Eng. Res. Des., 165, 69 (2021). https://doi.org/10.1016/j.cherd.2020.10.017
  2. R. Lebrero, A. C. Gondim, R. Perez, P. A. Garcia-Encina, and R. Munoz, "Comparative assessment of a biofilter, a biotrickling filter and a hollow fiber membrane bioreactor for odor treatment in wastewater treatment plants", Water Res., 49, 339 (2014). https://doi.org/10.1016/j.watres.2013.09.055
  3. Estrada, J. M., Kraakman, N. J. R., Lebrero, R., and Munoz, "A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies". Biotechnol. Adv., 30 (6), 1354, (2012). https://doi.org/10.1016/j.biotechadv.2012.02.010
  4. S-H. Lee and A. J. Heber, "Ethylene removal using biotrickling filters: Part II. Parameter estimation and mathematical simulation" Chem. Eng. J., 158, 89 (2010). https://doi.org/10.1016/j.cej.2009.12.034
  5. S-H. Lee, C. Li, and A. J. Heber, "The effect of nitrate on ethylene biofiltration", J. Hazard. Mater., 241-242, 331 (2012). https://doi.org/10.1016/j.jhazmat.2012.09.051
  6. Q. Liu, M. Li, R. Chen, Z. Li, G. Qian, T. An, J. Fu, and G. Sheng, "Biofiltration treatment of odors form municipal solid wastewater treatment plants". Waste Manag., 29, 2051-2058 (2009). https://doi.org/10.1016/j.wasman.2009.02.002
  7. N. J .R. Kraakman, J. Rocha-Rios, and M. C. M Van Loosdrecht, "Review of mass transfer aspects for biological gas treatment". Appl. Microbiol. Biotechnol., 91, 873-886 (2011). https://doi.org/10.1007/s00253-011-3365-5
  8. A. Kumar, J. Dewulf, and H. Van Langenhove, "Membrane -based biological waste gas treatment", Chem. Eng. J., 136, 82 (2008). https://doi.org/10.1016/j.cej.2007.06.006
  9. I. H. Cho and J. T. Kim, "Trends in the technology and market of membrane bioreactors (MBR) for wastewater treatment and reuse and development directions", Membr. J., 23 (1), 24 (2013).
  10. D. Jeong, J. S. Min, S. M. Lee, and K. Y. Chung, "Transmembrane pressures for the submerged flat membrane in the activated sludge solution by circulation of the cleaning spherical beads", Membr. J., 28 (1), 62-66 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.1.62
  11. I. De Bo, H. Van Langenhove, and J. Heyman, "Removal of dimethyl sulfide from waste air in a membrane bioreactor", Desalination, 148, 281 (2002). https://doi.org/10.1016/S0011-9164(02)00715-4
  12. S. J. Ergas, L. Shumway, M. W. Fitch, and J. J. Neemann, "Membrane process for biological treatment of contaminated gas streams", Biotechnol. Bioeng., 63 (1999) 431-441. https://doi.org/10.1002/(SICI)1097-0290(19990520)63:4<431::AID-BIT6>3.0.CO;2-G
  13. H. Van Langenhove, I. De Bo, P. Jacobs, K. Demeestere, and J. Dewulf, "A membrane bioreactor for the removal of dimethyl sulphide and toluene from waste air", Water Sci. Technol,. 50, 215 (2004).
  14. S. J. Ergas, "Membrane bioreactors", in: C.Kennes, M. C. Veiga (Eds.), Bioreactors for Waste Gas Treatment, Kluwer Academic Publishers, Dordrecht (2001).
  15. M. W. Reij, J. T. F. Keurentjes, and S. Hartmans, "Membrane bioreactors for waste gas treatment", J. Biotechnol., 59, 155 (1998). https://doi.org/10.1016/S0168-1656(97)00169-7
  16. M. H. V. Mulder, "Basic Principles of Membrane Technology", 2nd ed., Kluwer Academic Publishers, Dordrecht (1996).
  17. J. J. Orgill, H. K. Atiyeh, M. Devarapalli, J. R. Phillips, R. S. Lewis, and R. L. Huhnke, "A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors", Bioresour. Technol., 133, 340 (2013). https://doi.org/10.1016/j.biortech.2013.01.124
  18. Z. Wang, G. Xiu, X. Wu, L. Wang, J. Cai, and D. Zhang, "Biodegradation of xylene mixture from artificial simulated waste gases by capillary membrane bioreactors", Chem. Eng J., 229, 508 (2013). https://doi.org/10.1016/j.cej.2013.05.001
  19. E. Morral, C. Lao-Luque, D. Gabriel, X. Gamisans, and A. D. Dorado, "Capillary membrane bioreactor for abatement of low soluble compounds in waste gas", J. Chem. Technol. Biotechnol., 93, 548 (2018). https://doi.org/10.1002/jctb.5400
  20. W. Lu, Z. Wan, and G. Xiu, "Biodegradation of gaseous xylene in a flat composite membrane bioreactor", Environ. Technol., 42, 1989 (2021) https://doi.org/10.1080/09593330.2019.1686541
  21. A. Kumar, J. Dewulf, A. Vercruyssen, and H. van Langenhove. "Performance of a composite membrane bioreactor treating toluene vapors: inocula selection, reactor performance and behavior under transient conditions". Bioresour. Technol., 100, 2381 (2008). https://doi.org/10.1016/j.biortech.2008.11.004
  22. Z. Wang, G. Xiu, T. Qiao, K. Zhao, and D. Zhang, "Coupling ozone and hollow fibers membrane bioreactor for enhanced treatment of gaseous xylene mixture". Bioresour. Technol., 130, 52 (2013a). https://doi.org/10.1016/j.biortech.2012.11.106
  23. A. Muszynski, A. Tabernacka, and M. Zaleska-Radziwill, "How to reduce the emission of microorganisms from a biofilter used to treat waste gas from a food industry plant", Atmosphere, 21, 673 (2021).
  24. T. H. Choi and H. B. Park, Membrane and virus filter trends in the processes of biopharmaceutical production, Membr. J., 30 (1), 9-20 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.1.9