DOI QR코드

DOI QR Code

Characteristics Analysis of the Winter Precipitation by the Installation Environment for the Weighing Precipitation Gauge in Gochang

고창 지점의 강수량계 설치 환경에 따른 겨울철 강수량 관측 특성 분석

  • Kim, Byeong Taek (Operational Systems Development Department, National Institute Meteorological Sciences) ;
  • Hwang, Sung Eun (Operational Systems Development Department, National Institute Meteorological Sciences) ;
  • Lee, Young Tae (Operational Systems Development Department, National Institute Meteorological Sciences) ;
  • Shin, Seung Sook (Operational Systems Development Department, National Institute Meteorological Sciences) ;
  • Kim, and Ki Hoon (Operational Systems Development Department, National Institute Meteorological Sciences)
  • 김병택 (국립기상과학원 현업운영개발부) ;
  • 황성은 (국립기상과학원 현업운영개발부) ;
  • 이영태 (국립기상과학원 현업운영개발부) ;
  • 신승숙 (국립기상과학원 현업운영개발부) ;
  • 김기훈 (국립기상과학원 현업운영개발부)
  • Received : 2021.09.08
  • Accepted : 2021.10.20
  • Published : 2021.10.31

Abstract

Using the precipitation data observed at the Gochang Standard Weather Observatory (GSWO) during the winter seasons from 2014 to 2016, we analyzed the precipitation characteristics of the winter observation environment. For this study, we used four different types of precipitation gauges, i.e., No Shield (NS), Single Alter (SA), Double Fence Intercomparison Reference (DFIR), and Pit Gauge (PG). We analyzed the data from each to find differences in the accumulated precipitation, characteristics of the precipitation type, and the catch efficiency according to the wind speed based on the DFIR. We then classified these into three precipitation types, i.e., rain, mixed precipitation, and snow, according to temperature data from Gochang's Automated Synoptic Observing System (ASOS). We considered the DFIR to be the standard precipitation gauge for our analysis and the cumulative winter precipitation recorded by each other gauge compared to the DFIR data in the following order (from the most to least similar): SA, NS, and PG. As such, we find that the SA gauge is the most accurate when compared to the standard precipitation gauge used (DFIR), and the PG system is inappropriate for winter observations.

고창 표준기상관측소(Gochang Standard Weather Observatory, GSWO)에서 3년간(2014-2016년) 관측한 겨울철 강수량 자료를 사용하여 겨울철 관측환경에 따른 강수량 관측 특성을 분석하였다. 이를 위해, 설치환경이 다른 강수량계 4종인 NS(No Shield), SA(Single Alter), DFIR(Double Fence Intercomparison Reference), PG(Pit Gauge)를 사용하여, DFIR을 기준으로 누적 강수량 차이, 강수 유형별 특성, 풍속 변화에 따른 수집효율을 분석하였다. 강수 유형은 고창 종관기상관측장비(Automated Synoptic Observing System, ASOS)의 기온 관측 자료를 사용하여 강우, 혼합 강수, 강설로 분류하여 분석하였다. 겨울철 누적 강수량은 SA, NS, PG 순으로 DFIR과 유사하게 나타났으며, 통계 분석 결과에서는 SA가 DFIR과 가장 유사한 결과를 보였다. 결과적으로, 겨울철 강수량 관측에서는 SA가 기준 강수량계와 가장 유사하게 관측되었으며, PG는 겨울철 관측에 적합하지 않은 것으로 분석된다.

Keywords

Acknowledgement

이 연구는 기상청 국립기상과학원 「표준기상관측 및 활용연구」 (KMA2018-00221)의 지원으로 수행되었습니다.

References

  1. Ahn, S.R., Lee, J.W., and Kim, S.J., 2015, Projection of Future Snowfall and Assessment of Heavy Snowfall Vulnerable Area Using RCP Climate Change Scenarios, Journal of The Korean Society of Civil Engineers 35(3), 545-556. (in Korean) https://doi.org/10.12652/Ksce.2015.35.3.0545
  2. Alter, J.C., 1937, Shielded storage precipitaiton gauges, Monthly Weather Review 65, 262-265. https://doi.org/10.1175/1520-0493(1937)65<262:SSPG>2.0.CO;2
  3. Folland, C.K., 1988, Numerical models of the raingauge exposure problem, field experiments and an improved collector design, Quarterly Journal of the Royal Meteorological Society, 114, 1485-1516. https://doi.org/10.1002/qj.49711448407
  4. GEONOR, 2011, Geonor Manual: GEONOR T-200B Series Precipitation Gauge Instruction Manual, Rev. 10.7, 25 p.
  5. Goodison, B.E., Louie, P.Y.T., and Yang, D., 1998, WMO Solid Precipitation Measurement Intercomparison Final Report, WMO/TD-No.872. 212 p.
  6. Groisman, P.Y., Koknaeva, V.V., Belokrylova, T.A., and Karl, T.R., 1991, Overcoming biases of precipitation measurement - a history of the USSR experience, Bulletin of the American Meteorological Society, 72, 1725-1733. https://doi.org/10.1175/1520-0477(1991)072<1725:OBOPMA>2.0.CO;2
  7. Ha, J.H., Lee, Y.H., and Kim, Y.H., 2016, Forecasting the Precipitation of the Next Day Using Deep Learngig, Journal of Korean Institute of Intelligent Systems 26(2), 93-98. (in Korean) https://doi.org/10.5391/JKIIS.2016.26.2.093
  8. Ibrahim, A.D., Basarudin, H., Ramli, A. F., Yaakop, M., Sulaiman, M.I., and Azlan Abu, M., 2019, Development of rain gauge using weight measurement for microwave network, AIP Conference Proceedings Volume 2129, 020126
  9. Kang, B.S., and Lee B.K., 2008, Predicting Probability of Precipitation Using Artificial Neural Network and Mesoscale Numerical Weather Prediction, Journal of The Korean Society of Civil Engineers B 28(5B), 485-493. (in Korean)
  10. Kim, G.Y., 2020, The Study for Classifying Snowfall Area Types with Consideration of Snowfall Characteristics and Times, Journal of the Society of Disaster Information Vol. 16, No. 1, 21-33. (in Korean)
  11. Kim, H.G., Lee, H.Y., Kim, J.W., Lee, S.W., Boo, K.O., and Lee, S.E., 2021, Effect of Model Domain on Summer Precipitation Predictions over the Korean Peninsula in WRF Model, Atmosphere 31(1), 17-28. (in Korean) https://doi.org/10.14191/ATMOS.2021.31.1.017
  12. Kochendorfer, J., Rasmussen, R., Wolff, M., Baker, B., Hall, M. E., Meyers, T., Landolt, S., Jachcik, A., Isaksen, K., Braekkan, R., and Leeper, R., 2017, The quantification and correction of wind-induced precipitation measurement errors, Hydrology and Earth System Sciences, 21, 1973-1989. https://doi.org/10.5194/hess-21-1973-2017
  13. Lee, S.H. and Yoo, J.W., 2014, A Study on Predictability of Snowfall Amount due to Fine Difference of Spatial Distribution of Remote Sensing based Sea Surface Temperature, Journal of Environmental Science International 23(8), 1481-1493. (in Korean) https://doi.org/10.5322/JESI.2014.23.8.1481
  14. Mekis, E. and Vincent, L.A., 2011, An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada, Atmosphere-Ocean, 49, 163-177. https://doi.org/10.1080/07055900.2011.583910
  15. NIMS, 2021, Annual Report of the Standard Weather Observatories in Korea, NIMS, 105 p. (in Korean)
  16. Rasmussen, R.M., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., Black, J., Theriault, J. M., Kucera, P., Gochis, D., Smith, C., Nitu, R., Hall, M., Ikeda, K., and Gutmann, E., 2012, How Well Are We Measuring Snow: The NOAA/FAA/NCAR Winter Precipitation Test Bed, Bulletin of the American Meteorological Society, 93, 811-829. https://doi.org/10.1175/BAMS-D-11-00052.1
  17. Reverdin, A., 2016, Description of the Quality Control and Event Selection Procedures used within the WMO-SPICE project, WMO Technical Conference on meteorological and environmental instruments and methods of observations.
  18. Trenberth, K.E., 2011, Changes in precipitation with climate change, Climate Research, 47, 123-138. https://doi.org/10.3354/cr00953
  19. Wolff, M. A., Isaksen, K., Petersen-Overleir, A., Odemark, K., Reitan, T., and Braekkan, R., 2015, Derivation of a new continuous adjustment function for correcting wind-induced loss of solid precipitation: results of a Norwegian field study, Hydrology and Earth System Sciences, 19, 951-967. https://doi.org/10.5194/hess-19-951-2015
  20. World Meteorological Organization (WMO), 2018, Guide to instruments and methods of observation: Volume I-Measurement of Meteorological Variables, WMO-No. 8 2018 edition, 549 p.
  21. Yang, D. Q., Goodison, B. E., Metcalfe, J. R., Louie, P., Leavesley, G., Emerson, D., Hanson, C. L., Golubev, V. S., Elomaa, E., Gunther, T., Pangburn, T., Kang, E., and Milkovic, J., 1999, Quantification of precipitation measurement discontinuity induced by wind shields on national gauges, Water Resources Research, 35, 491-508. https://doi.org/10.1029/1998WR900042
  22. Yang, D. Q., 2014, Double Fence Intercomparison Reference (DFIR) vs. Bush Gauge for "true" snowfall measurement, Journal of Hydrology, 509, 94-100. https://doi.org/10.1016/j.jhydrol.2013.08.052