DOI QR코드

DOI QR Code

Analyzing the Characteristics of Atmospheric Stability from Radiosonde Observations in the Southern Coastal Region of the Korean Peninsula during the Summer of 2019

라디오존데 고층관측자료를 활용한 한반도 남해안 지역의 2019년도 여름철 대기 안정도 특성 분석

  • Shin, Seungsook (Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Hwang, Sung-Eun (Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Lee, Young-Tae (Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Kim, Byung-Taek (Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Kim, Ki-Hoon (Operational Systems Development Department, National Institute of Meteorological Sciences)
  • 신승숙 (국립기상과학원 현업운영개발부) ;
  • 황성은 (국립기상과학원 현업운영개발부) ;
  • 이영태 (국립기상과학원 현업운영개발부) ;
  • 김병택 (국립기상과학원 현업운영개발부) ;
  • 김기훈 (국립기상과학원 현업운영개발부)
  • Received : 2021.07.30
  • Accepted : 2021.10.15
  • Published : 2021.10.31

Abstract

By analyzing the characteristics of atmospheric stability in the southern coastal region of the Korean Peninsula in the summer of 2019, a quantitative threshold of atmospheric instability indices was derived for predicting rainfall events in the Korean Peninsula. For this analysis, we used data from all of the 243 radiosonde intensive observations recorded at the Boseong Standard Weather Observatory (BSWO) in the summer of 2019. To analyze the atmospheric stability of rain events and mesoscale atmospheric phenomena, convective available potential energy (CAPE) and storm relative helicity (SRH) were calculated and compared. In particular, SRH analysis was divided into four levels based on the depth of the atmosphere (0-1, 0-3, 0-6, and 0-10 km). The rain events were categorized into three cases: that of no rain, that of 12 h before the rain, and that of rain. The results showed that SRH was more suitable than CAPE for the prediction of the rainfall events in Boseong during the summer of 2019, and that the rainfall events occurred when the 0-6 km SRH was 150 m2 s-2 or more, which is the same standard as that for a possible weak tornado. In addition, the results of the atmospheric stability analysis during the Changma, which is the rainy period in the Korean Peninsula during the summer and typhoon seasons, showed that the 0-6 km SRH was larger than the mean value of the 0-10 km SRH, whereas SRH generally increased as the depth of the atmosphere increased. Therefore, it can be said that the 0-6 km SRH was more effective in determining the rainfall events caused by typhoons in Boseong in the summer of 2019.

한반도 남해안 지역의 여름철 대기 안정도 특성을 분석함으로써, 한반도 특성에 맞는 강수 예측을 위한 대기 안정도 지수의 정량적인 임계값을 도출하고자 하였다. 보성 표준기상관측소에서 관측한 2019년도 여름철 라디오존데 집중관측자료를 분석에 사용하였으며, 총 관측자료는 243개 이다. 강수 유무 및 중규모 대기 현상에 대한 대기 안정도를 분석하기 위해서, 대류가용잠재에너지(Convective Available Potential Energy, CAPE)와 폭풍지수(Storm Relative Helicity, SRH)를 비교하였으며 특히 SRH 분석은 고도 별로 총 4개의 층으로(0-1, 0-3, 0-6, 0-10 km) 세분화하였다. 강수 유무에 따른 분석은 강수가 없는 경우, 강수발생 전 12시간, 강수 발생 시로 구분하여 수행하였다. 그 결과, 2019년도 보성에서 발생한 여름철 강수 예측에는 CAPE 보다 SRH가 더 적합하며 0-6 km SRH가 약한 토네이도가 발생가능한 기준과 같은 150 m2 s-2 이상일 경우 강수가 발생한 것으로 분석 된다. 또한, 장마와 태풍 기간의 대기 안정도를 분석한 결과를 보면, 일반적으로 SRH는 대기 깊이가 두꺼워 질수록 값이 커지는 데 반해서 0-10 km SRH 평균값 보다 0-6 km 의 SRH 값이 더 크게 나타났다. 따라서, 2019년도 보성에서 발생한 태풍에 의한 강수를 판별하는 데는 0-6 km 의 SRH 값이 더 효과적이라고 할 수 있다.

Keywords

Acknowledgement

논문의 개선을 위해 좋은 의견을 제시해 주신 두 분의 심사위원께 감사를 드립니다. 이 연구는 기상청 국립기상과학원 「표준기상관측 및 활용연구」(KMA2018-00221) 의 지원으로 수행되었습니다. 관측자료 생산을 위해 힘써주신 보성표준기상관측소 직원여러분께 감사드립니다.

References

  1. Coffer, B.E., Parker, M. D., Thompson, R. L., Smith, B. T., and Jewell, R. E., 2019, Using near-ground storm relative helicity in supercell tornado forecasting. Weather and Forecasting, 34, 1417-1435. https://doi.org/10.1175/waf-d-19-0115.1
  2. DeRubertis, Diana, 2006, Recent Trend in Four Common Stability Indices Derived from U.S. Radiosonde Observation. Journal of Climate, 19, 309-323. https://doi.org/10.1175/JCLI3626.1
  3. Hwang, S. O. and Hong, S. Y., 2012, The impact of observation systems on medium-range weather forecasting in a global forecast system, Asia-Pacific Journal of Atmospheric Sciences, 48, 159-170. https://doi.org/10.1007/s13143-012-0016-4
  4. Hobbs, P. V., and Wallace, J. M., 1977, Atmospheric Science: An Introductory Survey. Academic Press, 350 p.
  5. Jung, S.-P., In, S.-R., Kim, H.-W., Sim, J.K., Han, S.-O., and Choi, B.-C., 2015, Classification of Atmospheric Vertical Environment Associated with Heavy Rainfall using Long-Term Radiosonde Observational Data, 1997~2013. Atmosphere, 25, 611-622. (in Korean) https://doi.org/10.14191/Atmos.2015.25.4.611
  6. Kerr, B. W., and Darkow, G. L., 1996, storm-relative winds and helicity in the tornadic thunderstorm environment. Weather and Forecasting, 11, 489-505. https://doi.org/10.1175/1520-0434(1996)011<0489:SRWAHI>2.0.CO;2
  7. Kim, K.-H., Kim, Y.-H., and Chang, D.-E., 2009(a), The Analysis of Changma Structure using Radiosonde Observational Data from KEOP-2007: Part I. the Assessment of the Radiosonde Data. Atmosphere, 19(2), 213-226. (in Korean)
  8. Kim, K.-H., Kim, Y.-H., and Chang, D.-E., 2009(b), The analysis of changma structure using radiosonde observational data from KEOP-2007: Part II. The dynamic and thermodynamic characteristics of changma in 2007. Atmosphere, 19(4), 297-307. (in Korean)
  9. Kim, Y.-C., and Ham, S.-J., 2009, Heavy rainfall prediction using convective instability index, Journal of the Korean Society for Aviation and Aeronautics, 17, 17-23. (in Korean)
  10. Kim, Y. H., Jeon, E. H., Chang, D. E., Lee, H. S., and Park, J. I., 2010, The impact of T-PARC 2008 dropsonde observations on typhoon track forecasting. Asia-Pacific Journal of Atmospheric Sciences, 46, 287-303. https://doi.org/10.1007/s13143-010-1011-2
  11. Lee, S.-M., and Byun, H.-R., 2011, Distribution of convective energy at upper level in South Korea and the possibility of artificial showery rain caused by activated CAPE. Theoretical and Applied Climatology, 105, 537-551. https://doi.org/10.1007/s00704-011-0408-x
  12. Lorenc, A.C., Barker, D., Bell, R. S., Macpherson, B., and Maycock, A. J., 1996, On the use of radiosonde humidity observations in mid-latitude NWP. Meteorology and Atmospheric Physics, 60, 3-17. https://doi.org/10.1007/BF01029782
  13. Markowski, P. and Richardson, Y., 2010, Mesoscale Meteorology in the Midlatitudes. Wiley, 430 p.
  14. Nam, H.-G., Guo, J., Kim, H.-U., Jeong, J.H., Kim, B.-J., Shim, J.-K., and Kim, B.-G., 2019, A study of the characteristics of heavy rainfall in Seoul with the classification of atmospheric vertical structures. Journal of the Korean earth science society, 40(6), 572-583. (in Korean) https://doi.org/10.5467/JKESS.2019.40.6.572
  15. Rasmussen, E. N., and Blanchard, D. O., 1998, A baseline climatology of sounding-derived supercell and tornado forecast parameters. Weather and Forecasting, 13, 1148-1164. https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2
  16. Rodriguez, O., and Bech, J., 2018, Sounding-derived parameters associated with tornadic storms in Catalonia. International Journal of Climatology, 38, 2400-2414. https://doi.org/10.1002/joc.5343
  17. Taylor, G. E. and Darkow, G. L., 1982, Atmospheric structure prior to tornadoes as derived from proximity and precedent upper air sounding. NCR Technical Report. NUREG/CR-2359, 95 p.