DOI QR코드

DOI QR Code

A Case Study of Strong Wind Event over Yeongdong Region on March 18-20, 2020

2020년 3월 18일-20일 영동지역 강풍 사례 연구

  • Ahn, Bo-Yeong (High Impact Weather Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Yoo-Jun (High Impact Weather Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Baek-Jo (High Impact Weather Research Department, National Institute of Meteorological Sciences) ;
  • Lee, Yong-Hee (High Impact Weather Research Department, National Institute of Meteorological Sciences)
  • 안보영 (국립기상과학원 재해기상연구부) ;
  • 김유준 (국립기상과학원 재해기상연구부) ;
  • 김백조 (국립기상과학원 재해기상연구부) ;
  • 이용희 (국립기상과학원 재해기상연구부)
  • Received : 2021.05.10
  • Accepted : 2021.07.27
  • Published : 2021.10.31

Abstract

This study investigates the synoptic (patterns of southern highs, northern lows, and lows rapidly developed by tropopause folding), thermodynamic, and kinematic characteristics of a strong wind that occurred in the Yeongdong region of South Korea on March 18-20, 2020. To do so, we analyzed data from an automatic weather station (AWS), weather charts, the European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis, rawinsonde, and windprofiler radars. The daily maximum instantaneous wind speed, exceeding 20 m s-1, was observed at five weather stations during the analysis period. The strongest instantaneous wind speed (27.7 m s-1) appeared in the Daegwallyeong area. According to the analysis of weather charts, along with the arrangement of the north-south low-pressure line, the isobars were moved to the Yeongdong area. It showed a sine wave shape, and a strong wind developed owing to the strong pressure gradient. On March 19, in the northern part of the Korean Peninsula, with a drop in atmospheric pressure of 19 hPa or more within one day, a continuous strong wind was developed by the synoptic structure of the developing polar low. In the adiabatic chart observed in Bukgangneung, the altitude of the inversion layer was located at an altitude of approximately 1-3 km above the mountaintop, along with the maximum wind speed. We confirmed that this is consistent with the results of the vertical wind field analysis of the rawinsonde and windprofiler data. In particular, based on the thermodynamic and kinematic vertical analyses, we suggest that strong winds due to the vertical gradient of potential temperature in the lower layer and the development of potential vorticity due to tropopause folding play a significant role in the occurrence of strong winds in the Yeongdong region.

본 연구는 2020년 3월 18일부터 20일까지 영동지역에 강풍이 발생했던 사례(남고북저형, 대류권계면 접힘에 의해 급격하게 발달하는 저기압)의 종관 및 열역학적/운동학적특성을 조사하기 위해 AWS 관측 자료, 종관 일기도, ECMWF 재분석 자료, 레윈존데, 윈드프로파일러 자료를 이용하였다. 분석결과, 사례 기간 영동지역 5개소에서 관측된 최대 순간 풍속은 20 m s-1 이상으로 나타났으며 대관령(27.7 m s-1)에서 가장 강하게 나타났다. 종관분석에서는 남고북저형의 기압배치와 함께 영동지역으로 등압선의 모양이 사인(sin)파 형태를 보이며 강한 기압경도력에 의해 강풍이 발달하다가 3월 19일부터는 한반도 북부지역에서 하루 내에 19 hPa 이상의 기압 하강과 함께 발달하는 저기압에 의해 지속적인 강풍이 발달했다. 북강릉 단열선도에서 역전층의 고도는 하층 강풍대와 함께 산 정상의 약 1-3 km 고도에 위치하였고, 레윈존데 및 수직 측풍 장비(윈드프로파일러)의 연직 바람장 분석 결과와 일치함을 확인할 수 있었다. 특히 열역학적 및 운동학적 연직 분석에서, 하층에서 온위의 연직 경도에 의한 강한 바람과 대류권계면 접힘에 의한 위치 소용돌이도의 발달이 영동지역 강풍 발생에 큰 역할을 한 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 기상청 국립기상과학원 "재해기상 감시·분석·예측기술 지원 및 활용연구(KMA2018-00123)" 과제의 일환으로 수행되었습니다.

References

  1. Ahn, B.Y., Kwon, T.Y., Cho, K.H., Lee, J.S., and Lee, K.T., 2007, Analysis of cloud properties related to Yeongdong heavy snow using the MODIS cloud product. Korean Journal of Remote Sensing, 23(2), 71-87. (in Korean) https://doi.org/10.7780/KJRS.2007.23.2.71
  2. Bell, G.D., and Bosart, L.F., 1993, A case study diagnosis of the formation of an upper-level cutoff cyclonic circulation over the eastern United States. Monthly Weather Review, 121, 1635-1655. https://doi.org/10.1175/1520-0493(1993)121<1635:acsdot>2.0.co;2
  3. Bluestein, H.B., 1993, Synoptic-Dynamic meteorology in midlatitudes, Vol. 2, Oxford University Press, UK, 594.
  4. Brinkmann, W.A.R., 1974, Strong downslope winds at Boulder, Colorado. Monthly Weather Review, 102, 592-602. https://doi.org/10.1175/1520-0493(1974)102<0592:SDWABC>2.0.CO;2
  5. Clark, T.L., and Peltier, W.R., 1984, Critical level reflection and the resonant growth of nonlinear mountain waves. Journal of Atmospheric Science, 41, 3122-3134. https://doi.org/10.1175/1520-0469(1984)041<3122:CLRATR>2.0.CO;2
  6. Durran, D.R., 1986, Another look at downslope windstorms, Part I: The development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. Journal of Atmospheric Science, 43, 2527-2543. https://doi.org/10.1175/1520-0469(1986)043<2527:ALADWP>2.0.CO;2
  7. ECMWF (European Centre for Medium-Range Weather Forecasts), IFS documentation. ECMWF, Reading, United Kingdom. https://www.ecmwf.int/en/newsletter/159/meteorology/global-reanalysis-goodbye-era-interim-hello-era5 (last access: 9 March 2019).
  8. Heo, K.Y., Lee, J.W., Ha, K.J., Jun, K.C., and Park, K.S., 2008, Model optimization for sea surface wind simulation of strong wind cases. Journal of Korean Earth Science Society, 29(3), 267-279. (in Korean)
  9. Hoskins, B.J., Mclntyre, M.E., and Robertson, A.W., 1985, On the use and significance of isentropic pontential vorticity maps, quarterly Janurnal of the Royal Meteorological Society, 111, 877-946. https://doi.org/10.1002/qj.49711147002
  10. Jang, W., and Chun, H.Y., 2008, Severe downslope winds of Gangneung in the springtime. Atmosphere, 18(3), 207-224. (in Korean)
  11. Jung, W.S., and Lee, H.W., 2003, Numerical experiments on the terrain following strong wind phenomenon effecting to the onset of sea breeze. Journal of Korean Earth Science Society, 24(4), 325-336. (in Korean)
  12. Kim, J.H., and Chung, I.U., 2006, Study on mechanisms and orographic effect for the springtime downslope windstorm over the Yeongdong region. Atmosphere, 16(2), 67-83. (in Korean)
  13. Kim, J.H., Min, K.H., 2016, Analysis of snowfall development mechanism over the Korea Peninsula due to polar low. Journal of Korean Earth Science Society, 34(7), 645-661. (in Korean) https://doi.org/10.5467/JKESS.2013.34.7.645
  14. Kim, K.H., Kim, P.S., Kim, M.S., Kang, D.H., and Kwon, B.H., 2016, Improvement in wind vector from UHF wind profiler radar through removing ground echo. Journal of Environmental Science International, 25(2), 267-280. (in Korean) https://doi.org/10.5322/JESI.2016.25.2.267
  15. Kim, Y.S., and Hong, S.G., 1996, A study of quasi-Foehn in the Yeongdong-district in late spring or early summer. Journal of Korean Meteorological Society, 32, 593-600. (in Korean)
  16. Klemp, J.B., and Lilly, D.K., 1975, The dynamic of wave induced downslope winds. Journal of Atmospheric Science, 32, 320-339. https://doi.org/10.1175/1520-0469(1975)032<0320:TDOWID>2.0.CO;2
  17. Kolstad, E.W., 2011, A global climatology of favourable conditions for polar lows. Quarterly Journal of Royal Meteorological Society, 137, 1749-1761. https://doi.org/10.1002/qj.888
  18. Kuo, Y.H., Gyakum, J.R., and Gou, Z., 1995, A case of rapid continental mesoscale cyclogenesis. Part I: Model sensitivity experiments, Monthly Weather Review, 123, 970-998. https://doi.org/10.1175/1520-0493(1995)123<0970:ACORCM>2.0.CO;2
  19. Kurz, M., 1994, The role of diagnostic tools in modern weather forecasting, Meteorological Applications, 1, 45-67.
  20. Lee, H.R., Kim, K.E., Yoo, J.M., and Lee, W.J., 2002, Tropopause undulation associated with explosive development of a cyclone, Journal of Korean Meteorological Society, 38, 431-463. (in Korean)
  21. Lee, H.R., Kim, K.E., Yoo, J.M., and Min, K.D., 2001, A study on a severe winter weather occurred in the Korean Peninsula by tropopause undulation, Journal of Korean Meteorological Society, 37, 195-224. (in Korean)
  22. Lee, J.G., 2003, A numerical study of the orographic effect of the Taebaek mountains on the increase of the downslope wind speed near Gangneung area. Journal of Environmental Science International, 12(12), 1245-1254. (in Korean) https://doi.org/10.5322/JES.2003.12.12.1245
  23. Lee, J.G., and In, S.R., 2009, A numerical sensitivity experiment of the downslope windstorm over the Yeongdong region in relation to the inversion layer of temperature. Atmosphere, 19(4), 331-344. (in Korean)
  24. Long, R.R., 1953, Some aspects of the flow of stratified fluids I, A theoretical investigation. Tellus, 5, 42-58. https://doi.org/10.1111/j.2153-3490.1953.tb01035.x
  25. Orlanski, I., 1975, A rational subdivision of scales for atmospheric processes. Bulletin of American Meteorological Society., 56, 527-530. https://doi.org/10.1175/1520-0477-56.5.527
  26. Rasmussen, E.A., and J. Turner, 2003, Polar Lows: Mesoscale Weather System in the Polar Regions. Combridge University Press, 624 p.
  27. Robber, J.P., 1993, A dianostic case study of selfdevelopment as an antecedent conditioning process in explosive cyclogenesis, Monthly Weather Review, 121, 976-1006. https://doi.org/10.1175/1520-0493(1993)121<0976:adcsos>2.0.co;2
  28. Thrope, A.J., 1985, Diagnosis of balanced vortex structure using potential vorticity, Journal of the Atmospheric Sciences, 42, 397-406. https://doi.org/10.1175/1520-0469(1985)042<0397:DOBVSU>2.0.CO;2
  29. Uccellini, L.W., Keyser, D., Brill, K.F., and Wash, C.H., 1985, The president's day cyclone of 18-19 February 1979: Influence of upstream trough amplification and associated trppopause folding on rapid cyclogenesis, Monthly Weather Review, 113, 962-988. https://doi.org/10.1175/1520-0493(1985)113<0962:TPDCOF>2.0.CO;2
  30. World Meteorological Organization, 1986, Atmospheric ozon 1985: Global ozone reserch and monitoring project., Report No. 16, WMO, Geneva, Switzerland, 392.
  31. Zappa, G., L Shaffrey, and K. Hodges, 2014, Can polar lows be objectively identified and tracked in the ECMWF operational analysis and the ERA-interim reanalysis. Monthly Weather Review, 142, 2596-2608. https://doi.org/10.1175/mwr-d-14-00064.1